
A Tale of Two Topologies: Exploring Convertible
Data Center Network Architectures with Flat-tree

Yiting Xia, Xiaoye Steven Sun, Simbarashe Dzinamarira,
Dingming Wu, Xin Sunny Huang, T. S. Eugene Ng

Rice University

ABSTRACT

This paper promotes convertible data center network archi-
tectures, which can dynamically change the network topology
to combine the benefits of multiple architectures. We propose
the flat-tree prototype architecture as the first step to realize
this concept. Flat-tree can be implemented as a Clos network
and later be converted to approximate random graphs of
different sizes, thus achieving both Clos-like implementation
simplicity and random-graph-like transmission performance.
We present the detailed design for the network architecture
and the control system. Simulations using real data center
traffic traces show that flat-tree is able to optimize various
workloads with different topology options. We implement an
example flat-tree network on a 20-switch 24-server testbed.
The traffic reaches the maximal throughput in 2.5s after a
topology change, proving the feasibility of converting topol-
ogy at run time. The network core bandwidth is increased by
27.6% just by converting the topology from Clos to approx-
imate random graph. This improvement can be translated
into acceleration of applications as we observe reduced com-
munication time in Spark and Hadoop jobs.

CCS CONCEPTS

• Networks → Network architectures;Physical topolo-
gies; Data center networks;

KEYWORDS

Convertible data center networks; Clos networks; Random
graph networks

ACM Reference format:
Yiting Xia, Xiaoye Steven Sun, Simbarashe Dzinamarira, Ding-

ming Wu, Xin Sunny Huang, T. S. Eugene Ng. 2017. A Tale of
Two Topologies: Exploring Convertible Data Center Network Ar-
chitectures with Flat-tree. In Proceedings of SIGCOMM ’17, Los

Angeles, CA, USA, August 21-25, 2017, 14 pages.
https://doi.org/10.1145/3098822.3098837

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the au-
thor(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

© 2017 Copyright held by the owner/author(s). Publication rights
licensed to Association for Computing Machinery.
ACM ISBN 978-1-4503-4653-5/17/08. . . $15.00
https://doi.org/10.1145/3098822.3098837

1 INTRODUCTION
In this paper, we appeal for rethinking the design of data
center network architectures by introducing the concept of
convertibility. Convertibility is a network’s ability to change
between multiple topologies with different characteristics. This
change should be completely managed by software, without
involving human labor for rewiring the physical devices. With
the power of convertibility, it is possible for the first time
to build a data center that can function with different net-
work architectures to combine the benefits of conventionally
incompatible worlds. Our proposal is rooted in the recent
trends in the development of data center networks.

The first trend is the continuous efforts towards two mu-
tually exclusive goals for data center network design: easy
implementation vs. good performance. These efforts are re-
flected in the enthusiasm for Clos networks in industry and
random graph networks in academia. Clos, or multi-rooted
tree, is the de-facto standard data center network architecture
because of easy implementation [38, 39]. Figure 2b shows an
example Clos network. The central wiring between switches
in adjacent layers is relatively easy to manage, and the net-
work can be expanded to arbitrary size by adding stages.
Bandwidth oversubscription can occur at any switch layer
to save cost. Modular Pods are adopted as building blocks
to further ease network deployment and management. How-
ever, Clos networks have suboptimal throughput, as traffic
needs to traverse up and down the network hierarchy and
the resulting inefficiency exacerbates oversubscription.

In contrast, random graphs are proven to have optimal
throughput for uniform traffic [40, 41]. Without rigid struc-
tures, switches are more directly connected at shorter path
lengths. If implemented using the same switches and servers
as a Clos network, a random graph can provide richer band-
width and effectively alleviate the oversubscription problem.
This lack of structure also enables regional random graphs
to be constructed, i.e. a set of smaller local random graph
networks interconnected by random wiring into a large global
network. However, the neighbor-to-neighbor wiring between
random switch pairs is complicated, making real-world im-
plementation a daunting task.

Closely related to these conflicting stances is the second
trend of stagnation in the emergence of new data center
network architectures. Back in 2008 and 2009, the research
community proposed a number of interconnection networks
as the data center fabric, fat-tree [12], DCell [24], BCube [23],
and HyperX [11] being the famous examples. However, there
has been no breakthrough ever since. In the design space,
these architectures fall between Clos and random graph at the

295

https://doi.org/10.1145/3098822.3098837
https://doi.org/10.1145/3098822.3098837

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA Y. Xia et al.

extremes of the scale. They attempt to find the right middle
ground between easy implementation and good performance
by tuning the degree of hierarchical vs. flat structure, central
vs. neighbor-to-neighbor wiring, etc. Yet, the performance of a
network depends on the traffic pattern; each topology has the
sweet spot for particular workloads [40]. Measurement studies
of data center traffic show that data center services result in
very different traffic locality [30, 38] and that cluster sizes in
multi-tenant clouds vary significantly [13–15]. It is hard to
use a one-size-fit-all topology to address the heterogeneous
and ever-changing service needs in data centers.

Relaxing the constraint of fixed topologies, the third trend
is the advent of configurable data center networks that create
ad-hoc links as demanded by the traffic pattern. Some solu-
tions provide a local remedy for fixed topologies by adding
a small number of connections to alleviate hot spots [19, 22,
25, 26, 43, 51], while others create a flexible network core
for small-scale networks [3, 16, 17, 33, 34]. On one hand,
these works demonstrate it is technically mature to change
the network topology by software at run time. On the other
hand, the scalability limitation remains to be addressed.

Based on the above evidence, we make the bold claim that
it is time to build convertible data center network architec-
tures. The concept of convertible network is fundamentally
different from existing proposals with link flexibility. First, it
aims to achieve network-wide topology change in large-scale
data centers. The scalability of many previous works is con-
strained by a centralized device that enables flexibility, such
as 3D MEMS [16, 19, 43, 44, 48] and WDM ring [3, 33, 34].
To overcome this weakness, in our proposal the enabling de-
vices are placed across the network in a decentralized manner.
Second, instead of adding extra bandwidth to the network,
a convertible network rearranges the network structure to
utilize existing bandwidth resources more efficiently. Third,
rather than incremental topology evolution according to the
instantaneous traffic pattern, a convertible network changes
the intrinsic characteristics of the topology to fit the require-
ments of different workloads throughout their lifecycle.

We experiment with this concept by designing and im-
plementing the flat-tree1 prototype architecture, which can
convert between a Clos topology and random graphs at dif-
ferent scales. Clos has rich intra-rack bandwidth and thus is
suitable for traffic with strong rack-level locality. Random
graph is a perfect match for network-wide uniform traffic,
but it may have suboptimal performance for skewed traffic
or small cloud tenant clusters. Therefore, regional random
graph and global random graph should be used to adapt to
different cluster sizes. The examples in Section 2.1 show the
advantage of each topology given different traffic patterns.
Moreover, such a design has the potential to preserve easy
implementation from the Clos network, making practical
deployment of random graphs achievable.

1The name “flat-tree” captures the dual nature of the proposed architec-
ture. It can function as approximate random graphs (“flat” networks)
and Clos (multi-rooted “tree”). It is as easy to implement as a “tree”
network and has good performance as “flat” networks.

Flat-tree leverages inexpensive small port-count converter
switches to convert topologies dynamically. By changing the
configurations of the converter switches, cables are rewired to
different outgoing connections, as if they were unplugged and
replugged manually. Flat-tree takes a pragmatic approach
to start from a Clos network and addresses challenges of
flattening the tree structure to approximate random graphs.
Specifically, how to equalize switches in different layers and
relocate servers from edge to aggregation and core switches?
How to break the hierarchy and connect the network core and
edge directly? How to enable connections between switches
in the same layer at minimum wiring complexity?

Flat-tree inherits the merits of packaging and wiring from
Clos networks. It adopts the modular Pod design. Additional
hardware and wiring are packaged in Pods, leaving the same
external connectors as a Clos counterpart. Pods are connected
to core switches with a customized regular wiring pattern.
Adjacent Pods are interconnected through multi-link side
connectors to allow simple neighbor-wise wiring.

Flat-tree can approximate random graphs at different
scales, ranging from a Pod, to a subnetwork comprising
multiple Pods, to the entire network. It can also function
as Clos, which benefits applications that require rich equal-
cost redundant links, predictable path length, and rack-level
locality. Flat-tree can operate in hybrid mode: the network
is organized into functionally separate zones each having a
different topology. Workloads are placed into suitable zones
to optimize their performance. As the workloads change, the
network can be reorganized to adapt to the new requirements.

We discuss design options for the control plane and present
the implementation details given the current technology. To
exploit the link diversity in flat-tree, we adopt 𝑘-shortest-
path routing [50] and MPTCP [45], whose deployment in
large-scale data centers is an open challenge. The enormous
number of paths lead to explosion of network states. We pro-
pose an architecture-specific addressing scheme to aggregate
IP addresses and use SDN-based source routing to relieve
state-keeping at the switches. Packet-level simulations show
that given various traffic patterns on flat-tree networks of
different scales, the pragmatic implementation of 𝑘-shortest-
path routing and MPTCP achieves comparable throughput
to optimal routing from linear programming.

To further evaluate the practical performance of flat-tree,
we run packet-level simulations given real traffic traces from
several production data centers each carrying different ser-
vices. The results show that flat-tree is able to optimize for
diverse workloads with different topology options. We imple-
ment a flat-tree prototype on a 20-switch 24-server testbed
and run Spark and Hadoop applications with different topolo-
gies. The traffic reaches the maximal throughput only 2.5s
after a topology change, proving the feasibility of converting
the topology at run time. The network core bandwidth is
increased by 27.6% just by converting the topology from
Clos to approximate random graph. This improvement can
be translated into acceleration of applications as we observe
reduced communication time in Spark and Hadoop jobs.

296

A Tale of Two Topologies SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

Table 1: Throughput of clustered traffic normalized against the

minimum value in the compared architectures

Cluster Size Fat-tree Random Graph Two-stage Random Graph

8 1.91 1 1.16
30 1 1.38 1.65
100 1 1.59 1.17

2 MOTIVATING EXAMPLES

2.1 The Case for Convertibility

Two reasons contribute to the diversity of data center work-
loads. First, enterprise data centers may deploy different
services that have different traffic characteristics [30, 38]. For
instance, the Facebook data centers with different services
show different locality features. The Hadoop site has rack-
level locality, while the web and cache sites have Pod-level
locality [38]. Second, in public clouds, the virtual tenants have
different sizes and traffic patterns [13–15]. For example, in a
Microsoft data center, the mean tenant size is 79 VMs and
the largest tenant has 1487 VMs [15, 49]. In this subsection,
we use a simple example to motivate the necessity of using
different network topologies to serve different workloads.

We construct a 𝑘 = 16 fat-tree network [12], and use the
same devices to form random graph and two-stage random
graph networks [41]. The two-stage random graph network
first forms a random graph in each Pod and takes the Pods as
super nodes to form another layer of random graph together
with core switches. Figure 2b, 2c and 2d show approximations
of these topologies. To simulate intra-tenant communications
in cloud data centers, we pack consecutive servers into clusters
and create all-to-all traffic in each cluster. We measure the
throughput following a well-adopted methodology [41], which
assumes optimal routing and allocates bandwidth to flows
using a linear programming solver.

Table 1 shows the normalized throughput with different
cluster sizes. In the fat-tree network, each edge switch is
connected to 8 servers, and there are 64 servers per Pod. 8-
server clusters generate local traffic only, so fat-tree, without
bottleneck in the network core, yields the highest throughput.
Servers are distributed uniformly across all switches in the
random graph. In the two-stage random graph, servers in
each Pod are distributed uniformly across switches in the
Pod, and core switches take no servers. As a result, the two-
stage random graph has the second best performance since
the traffic is served with better locality than in the random
graph. For 30-server clusters, most of the traffic stays in Pods,
so the two-stage random graph has the highest throughput.
Random graph is particularly suitable for network-wide traffic
because of the rich core bandwidth, so it performs the best
for the cross-Pod traffic from 100-server clusters.

This example shows that different topologies perform bet-
ter for different workloads, depending on the extent of locality
they exhibit. We believe the network should be convertible
between multiple topologies to adapt to different workloads.
Our flat-tree architecture can work as a Clos network and
can approximate random graph and two-stage random graph.
The network can be configured to the topology that best
suits the workload. In hybrid-mode, the flat-tree network

C

S

C’$

S’$
b4:$6)port$cross$$

C

A$

S

E

b1:$6)port$default$

A$

C

S
a2:$4)port$local$

E

C

A$

S

E

a1:$4)port$default$

C

S
b2:$6)port$local$$

E
A$ A$

E
A’$
E’$

C’$

S’$

C

S
b3:$6)port$side$$

A$
E

A’$
E’$

C:$core$switch$
$
$
A:$aggrega?on$
$$$$$switch$
$
E:$edge$switch$
$
$
S:$server$

Figure 1: Converter switch configurations

is organized into functionally separate zones each having a
different topology. Clusters of different sizes can be placed
into suitable zones to optimize their performance. Our simu-
lation experiments with real data center traffic in Section 5.2
demonstrate the performance advantage of each supported
topology under different traffic.

2.2 Example Flat-tree Network

We use the simple flat-tree example in Figure 2 to demon-
strate how to convert a Clos network to an approximate
random graph. The gray lines represent original connections
in the Clos Pod that need to be replaced by the dashed
links in the flat-tree Pod. The most notable differences be-
tween Clos and random graphs are server distribution and
the types of links. In Clos networks, servers are attached to
edge switches only and all links are hierarchical, either be-
tween edge and aggregation switches or between aggregation
and edge switches. All switches are equal in random graphs.
Servers are uniformly distributed to the switches, and the
links are between random switch pairs. So, the first step
of conversion is to relocate servers to aggregation and edge
switches and to diversify the types of links.

To save cost, we aim to achieve these goals using small
port-count converter switches. We find 4-port and 6-port con-
verter switches the minimum-scale switches to facilitate the
required topology changes. As shown in the zoomed-in Pod,
flat-tree breaks an edge-server link and an aggregation-core
link in the Clos network, and connects the corresponding
server, edge, aggregation, and core switches to a converter
switch. Figure 1 illustrates the valid configurations of 4-port
and 6-port converter switches. The “default” configuration
enables the original Clos connections. The “local” config-
uration relocates the server to the aggregation switch and
connects the core and edge switches directly. This change is
local in the Pod.

4-port converter switches should not be used to relocate
servers to core switches. If we connect the server and the core
switch, the edge and aggregation switches must be connected
as well, otherwise we waste a link. There are sufficient edge-
aggregation links in the Pod, so this change fails to diversify
the types of links. 6-port converter switches introduce side
ports, through which two converter switches can be intercon-
nected. The “side” and “cross” configurations both relocate
servers to core switches, but connect edge and aggregation
switches to their peers in different ways. We only allow 6-port
converter switches in adjacent Pods to be interconnected for
simple neighbor-to-neighbor wiring.

297

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA Y. Xia et al.

b:#Clos#

c:#approximated#random#graph# d:#approximated#local#random#graph#a:#flat&tree#

Figure 2: Example flat-tree network and some achievable topologies. Core switches in stripe, aggregation switches in grid, edge switches in
shade, and servers as circles. Gray lines are connections in the original Clos network, which are replaced with the dashed links connected

to converter switches to form flat-tree. The converter switches show the configuration for approximated random graph. Flat-tree uses a
customized wiring pattern to connect Pods to core switches.

The number of 4-port and 6-port converter switches are
determined by the layout of the Clos network. In Figure 2,
each pair of edge and aggregation switches are connected
to a 4-port converter switch and a 6-port converter switch,
which show the approximate random graph configuration.
Converter switches and the additional wiring are packaged in
the Pod, keeping the same core connectors as a Clos Pod. The
side connectors of 6-port converter switches are bundled as
multi-link connectors to simplify inter-Pod wiring. Flat-tree
Pods are connected to core switches via a customized wiring
pattern (details in Section 3.2). In this example, the uplinks
from Pods are swapped in different ways, so that servers are
distributed uniformly across the core switches.

Flat-tree converts between multiple topologies with dif-
ferent converter switch configurations. Figure 2b shows the
Clos network, when all converter switches take the “default”
configuration. Figure 2c shows an approximate global random
graph, with the 4-port “local” and 6-port “side” configura-
tions. In practice, we can also use the 6-port “cross” config-
uration to swap connections. Figure 2d shows approximate
local random graphs in each Pod. It is configured in a way
that half servers are connected to the edge switches and half
to the aggregation switches. In this example, we use 4-port
“local” and 6-port “default” configurations. Flat-tree can also
operate in hybrid mode, with different combinations of the
above topologies each in a number of Pods.

This paper limits the discussion to one Pod layer connected
by core switches. Flat-tree can be extended to multi-stages of
Pods: the lower-layer Pods consider the edge switches in the
upper-layer Pods as core switches; intermediate switch-only
Pods take relocated servers from lower-layer Pods as their
own servers. We leave the details to future work.

3 FLAT-TREE ARCHITECTURE

3.1 Flat-tree Pod

Figure 3 depicts a flat-tree Pod. Without loss of generality,
we assume the number of edge switches is a multiple of the
number of aggregation switches. There are 𝑑 edge switches
and 𝑑/𝑟 aggregation switches. We pair up each edge switch
𝐸𝑗 with aggregation switch 𝐴𝑗/𝑟 and connect them to 𝑛
4-port converter switches and 𝑚 6-port converter switches.

𝑛 and 𝑚 represent the maximum number of servers orig-
inally connected to an edge switch that can be relocated
dynamically to aggregation and core switches. Whether to
relocate them depends on the topology to be achieved. We
place the converter switches evenly on the two sides of the
Pod: those connected to 𝐸0...𝐸𝑑/2−1 locate on the left of the
Pod and those connected to 𝐸𝑑/2...𝐸𝑑−1 locate on the right.
This forms a 𝑛× 𝑑/2 matrix of 4-port converter switches, i.e.
blade A in figure, and a 𝑚× 𝑑/2 matrix of 6-port converter
switches, i.e. blade B in figure, on each side of the Pod.

For both types of blades, the converter switches in any row
of column 𝑗 on the left blade are connected to edge switch
𝐸𝑗 and aggregation switch 𝐴𝑗/𝑟, and those on the right are
connected to edge switch 𝐸𝑗+𝑑/2 and aggregation switch
𝐴(𝑗+𝑑/2)/𝑟. Each 4-port converter switch connects to a core
switch and a server, so blade A has 𝑛× 𝑑/2 core connectors
and server connectors. Each 6-port converter switch has a
pair of side connectors as well, so blade B has 𝑚× 𝑑/2 core
connectors, server connectors, and double side connectors.
There may be remaining core connectors on the aggregation
switches and server connectors on the edge switches. The
total number of core connectors and server connectors are
equal to those in a Clos counterpart. If 𝑑 is odd, a middle
converter switch can be on either side, but the side connectors
of the 6-port converter switch are unused.

3.2 Pod-Core Wiring
In Clos, all Pod-core connections are between aggregation and
core switches. Suppose each aggregation switch has ℎ uplinks.
As Figure 4a shows, aggregation switches with the same
index 𝑖 in different Pods are connected to the same group of
ℎ core switches via the aggregation connectors. Repeatedly
for each Pod, this wiring pattern links the ℎ connectors for
each aggregation switch consecutively to core switches.

In flat-tree, as shown in Figure 3, there are 3 types of core
connectors. Core switches can be connected 1) to servers
via blade B connectors, 2) to edge switches via blade A
connectors, and 3) to aggregation switches via aggregation
connectors. The Pod-core wiring determines the distribution
of servers and different types of links (to an edge or aggre-
gation switch) across the core switches, thus affecting how
closely flat-tree approximates a random graph.

298

A Tale of Two Topologies SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

m�

d/2#

m x#d/2#server#connectors# �

m x#d/2#core#connectors# �

n�

d/2#

n x#d/2#server#connectors# �

n x#d/2#core#connectors# �

Blade#A# Blade#B#

core#
connector#

server#
connector#

i, j�

Ej�

Aj/r�
double#
side#

connectors#

core#
connector#

server#
connector#

i, j�

Ej####�

Aj/r�

d#edge#switches#E0#to#Ed91###

d/r#aggrega;on#switches#A0#to#Ad/r91###

core#
connector#

server#
connector#

i, j�

Ej+d/2 �

A(j+d/2)/r�

le<#blade#

right#blade#

core#
connector#

server#
connector#

i, j�

Ej+d/2�

A(j+d/2)/r�
double#
side#

connectors#

le<#blade#

right#blade#

Remaining#core#connectors#

Remaining#server#connectors#

Blade#B# Blade#A# Blade#A# Blade#B#

Figure 3: A flat-tree Pod. A pair of edge switch 𝐸𝑗 and aggregation switch 𝐴𝑗/𝑟 connected to 𝑛 4-port and 𝑚 6-port converter switches.
Converter switches are placed evenly on both sides as matrices. Blade A and B has 4-port and 6-port converter switches respectively.

As each aggregation switch corresponds to 𝑟 edge switches,
the ℎ aggregation connectors in Clos are replaced with 𝑛× 𝑟
blade A connectors, 𝑚× 𝑟 blade B connectors, and ℎ−𝑚×
𝑟 − 𝑛 × 𝑟 aggregation connectors. The Clos wiring pattern
is based on aggregation switches, each connected to ℎ core
switches. Since flat-tree has edge-core connections, its wiring
pattern should be based on edge switches. Each edge switch
corresponds to 𝑛 blade A connectors, 𝑚 blade B connectors,
and ℎ/𝑟 −𝑚− 𝑛 aggregation connectors, which connects to
overall ℎ/𝑟 core switches.

We offer two wiring options, shown in Figure 4b and 4c.
Connectors corresponding to the edge switches with the same
index 𝑗 in different Pods are connected to the same group of
ℎ/𝑟 core switches. Both wiring patterns connect the group of
core switches consecutively to blade B connectors, followed
by blade A connectors and aggregation connectors. They
rotate in different ways across Pods. Pattern 1 packs blade
B connectors continuously Pod by Pod throughout the set of
core switches. Pattern 2 moves them forward by one more
core switch as the Pod index grows. Both patterns wrap
around within the group.

Physically, we suggest wiring Pod 0 first, by linking every
𝑚 blade B connectors, 𝑛 blade A connectors, and ℎ/𝑟−𝑚−𝑛
aggregation connectors in turn to core switches consecutively.
We start from the left blades and move on to the right
blades, until all connectors in the Pod are consumed. In this
process, we mark the mapping between each edge switch
and the corresponding group of ℎ/𝑟 core switches. For the
following Pods, connectors corresponding to each edge switch
are connected to the marked ℎ/𝑟 core switches according to
the rotating patterns.

These wiring patterns have the following properties:
Property 1: For both wiring patterns, servers are dis-

tributed uniformly across the core switches.
Property 2: For both wiring patterns, the core switches

have an equal number of links of the same type.
Flat-tree maintains structure to ease implementation, so

servers and links must be permuted by wiring. These proper-
ties ensure that flat-tree well approximates random graphs.

Because these patterns follow straightforward rules, they
have low wiring complexity. Pattern 1 has better performance,
because a core switch does not connect to servers from adja-
cent Pods at the same time, thus it takes advantage of side

connections between adjacent Pods to the greatest extent.
Yet when ℎ/𝑟 is a multiple of 𝑚, different Pods are likely to
repeat the same pattern, thus reducing the wiring diversity.
In this case, pattern 2 is more favorable. Our previous paper
contains evaluation of these wiring patterns (Figure 5 in [47]).

3.3 Inter-Pod Wiring
For adjacent Pods 𝑝 and 𝑝+ 1, the 6-port converter switches
on the left blade B of Pod 𝑝+1 are connected to those on the
right blade B of Pod 𝑝 by the side connectors. Recall from
Figure 3 that the converter switches in the same column con-
nect to the same pair of edge and aggregation switches. We
want to connect an edge/aggregation switch to as many dif-
ferent switches as possible in the adjacent Pod, so we design
a shifting wiring pattern such that the converter switches in
the same column of the right Pod are connected to converter
switches each in a different column of the left Pod. Specif-
ically, let 𝑖 and 𝑗 be the row and column of the converter
switch matrices, converter switch ⟨𝑖, 𝑗⟩ on the left of Pod 𝑝+1
is connected to converter switch ⟨𝑖, (𝑑/2− 1− 𝑗 + 𝑖)%(𝑑/2)⟩
on the right of Pod 𝑝, which represents the converter switch
in the same row 𝑖 and in the column 𝑖 slots shifted from
the mirrored column 𝑑/2 − 1 − 𝑗. We want the converter
switches to be interconnected by different configurations, so
we have both peer-wise and edge-aggregation connections
across Pods. If 𝑖 is even, they take the 6-port “side” configu-
ration (in Figure 1); if 𝑖 is odd, they take the 6-port “cross”
configuration. To streamline the connection of adjacent Pods,
the side connectors on the same side of a Pod are bundled as
a multi-link connector that integrates this wiring pattern.

3.4 Server Distribution
In a random graph, servers are distributed uniformly across
the switches, because the random links roughly connect the
switches in a uniform manner. Yet flat-tree maintains struc-
tures, e.g. the Clos connections between edge and aggregation
switches, core switches connected to the Pods, though using
customized wiring patterns, and the neighbor-to-neighbor
wiring restricted to adjacent Pods. The path length of switch
pairs is not uniform for flat-tree, so we should place servers
intelligently to leverage the shorter paths in the network.

Recall that 6-port converter switches can relocate servers
to core switches, and 4-port ones can relocate servers to
aggregation switches, so the server distribution is determined
by the choice of 𝑚 and 𝑛. Because flat-tree aims at converting

299

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA Y. Xia et al.

Ej!in!Pod!0!
Ej!in!Pod!1!
Ej!in!Pod!2!

Ej!in!Pod!0!
Ej!in!Pod!1!
Ej!in!Pod!2!

Ai!in!Pod!0!
Ai!in!Pod!1!
Ai!in!Pod!2!

h core!switches!Cih!to!Cih+h-1 �

m blade!B� n blade!A� h/r-m-n aggreg.�
connectors!connectors! connectors!

h/r core!switches!Cjh/r!to!Cjh/r+h/r-1 �

h!aggrega8on!connectors!
m blade!B� n blade!A�
connectors!connectors! connectors!

a:!Clos!Pod;Core!Wiring!Pa=ern! b:!Flat;tree!Pod;Core!Wiring!Pa=ern!1! c:!Flat;tree!Pod;Core!Wiring!Pa=ern!2!

h/r-m-n aggreg.�

h/r core!switches!Cjh/r!to!Cjh/r+h/r-1 �

Figure 4: Pod-core wiring for the same set of connectors across Pods. All connectors are on aggregation switches in Clos; flat-tree has 3

types of connectors on blade A, B, and aggregation switches, enabling core-server, core-edge, and core-aggregation connections respectively.

generic Clos networks, which may have very different layouts,
it is difficult to pre-define the 𝑚 and 𝑛 values for optimal
transmission performance. We suggest a profiling scheme:
under the preferred Pod-core wiring pattern described in
Section 3.2, vary 𝑚 and 𝑛 until they result in the shortest
average path length over all server pairs. The sensitivity test
for this approach is in our prior paper [47].

3.5 Operation Modes

Global: Flat-tree approximates a network-wide (or global)
random graph in the “global” mode. 6-port converter switches
take either the “side” or the “cross” configuration (Figure 1
b3 or b4) depending on their row index in the matrix as
described in Section 3.3. 4-port converter switches take the
“local” configuration (Figure 1 a2).

Local: Flat-tree approximates a two-stage (or local) ran-
dom graph in the “local” mode. It first forms random graphs
in each Pod and takes the Pods as super nodes to form another
layer of random graph together with core switches. 6-port
and 4-port converter switches take the “local” configuration
(Figure 1 a2 and b2) to relocate half servers to aggregation
switches. Any remaining 6-port converter switches take the
“default” configuration (Figure 1 b1).

Clos: Flat-tree functions as a Clos network by default. All
converter switches take the “default” configuration (Figure 1
a1 and b1).

Hybrid: Flat-tree can be configured in the unit of a Pod,
so it can have arbitrary combinations of the above three
topologies each in a number of Pods. The converter switch
configurations follow the rules in their corresponding mode.

3.6 Cost Analysis

Because of their simple functionality, converter switches in
flat-tree can be realized by passive circuit switches. The
choice of specific switching technology depends on the existing
devices already deployed in the data center. If the data center
has copper cables in place, crosspoint switches whose per-port
cost is as low as $3 [31] can be used. Converter switches split
some cables into two parts. Because crosspoint switches are
passive devices, cables connected to a converter switch do
not need active elements. If manufactured properly, the cost
of two cables each with only one active element at the packet
switch end is equivalent to the cost of the original cable.

Many data centers nowadays use optical fibers for cross-
rack connections. To avoid the cost of extra transceivers, opti-
cal circuit switches are sensible options for converter switches.
Because converter switches have small port count, we can use

low-cost switching technologies, such as 2D MEMS [46] and
Mach-Zehnder switches [20], whose port count is limited to
moderate scale due to losses from photonic signal crossings
or other effects. The mass production cost of these technolo-
gies is dominated by packaging. While we are not able to
project future costs precisely, we anticipate that the per-port
cost will become reasonably cheap as photonic packaging
technology advances. The difference between transmit power
and receive sensitivity of commercial optical transceivers can
be over 8dB [7], which easily overcomes the insertion loss of
most optical switches. Amplifiers are thus not needed.

4 CONTROL SYSTEM
Because a data center is administered by a single authority,
we follow the recent trend of using a centralized network con-
troller for global network management. Flat-tree has several
operation modes with pre-known topologies, which designate
a fixed set of configurations for the converter switches. The
controller changes the topology by configuring the converter
switches, via specific control mechanisms depending on the
realization technology. For instance, most optical switches
can be programmed via a software interface. The converter
switch configurations for different flat-tree modes can be
hard-coded into the controller.

For flat-tree Clos mode, we can use ECMP [28], two-level
routing [12], or customized SDN routing with pre-computed
paths [39]. The study on random graph network [41] sug-
gests using 𝑘-shortest-path routing [50] and MultiPath TCP
(MPTCP) [45]. We adopt this approach for flat-tree global
mode and local mode, because they approximate random
graph and two-stage random graph respectively. However,
this prior study [41] failed to consider the overwhelmingly
large number of network states in a real implementation.
According to our experience with our testbed implementa-
tion, under the SDN paradigm, the number of Openflow
rules easily exceeds the capacity of commercial SDN switches
for a very small-scale random graph network. So, another
major scalability concern of random graph networks is from
the overhead of the control system, besides messy cable de-
ployment. Therefore, even deploying a static random graph
network requires a re-design of the control plane. In this
section, we propose a control system with a manageable num-
ber of network states for flat-tree, and this solution can be
easily applied to static random graph networks. Note that
the main contribution of this paper is the flat-tree network
architecture, and we acknowledge there may be alternative
control plane designs.

300

A Tale of Two Topologies SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

00001010# Switch#ID# Path#ID# Topology#ID# Server#ID#

8#bits#(10.0.0.0/8)# 13#bits# 3#bits# 2#bits# 6#bits#

SW#3# SW#8# SW#5# Switch#

Server#

Global#mode#link#

Local#mode#link#

Clos#mode#link#

Topology'
ID'

Switch'
ID'

Server'
ID'

'

IP'addresses'

'
0'(global)'

'
3'

'
2'

00001010''0000000000011''000''00''000010''''(10.0.24.2)'
00001010''0000000000011''001''00''000010''''(10.0.25.2)'
00001010''0000000000011''010''00''000010''''(10.0.26.2)'
00001010''0000000000011''011''00''000010''''(10.0.27.2)'

'
1'(local)'

'
8'

'
1'

00001010''0000000001000''000''01''000001''''(10.0.64.65)'
00001010''0000000001000''001''01''000001''''(10.0.65.65)'
00001010''0000000001000''010''01''000001''''(10.0.66.65)'

'

2'(Clos)'
'

5'
'

0' 00001010''0000000000101''000''10''000000''''(10.0.40.128)'
00001010''0000000000101''001''10''000000''''(10.0.41.128)'

a:#flat&tree#address#space#

b:#example#of#IP#address#assignment###

c:#list#of#IP#addresses#for#the#server#in#stripe#

Topology'
ID'

Switch'
ID'

Server'
ID'

!

k!
'

IP'addresses'

'
0'(global)'

'
3'

'
2'

'
16'

00001010''0000000000011''000''00''000010''''(10.0.24.2)'
00001010''0000000000011''001''00''000010''''(10.0.25.2)'
00001010''0000000000011''010''00''000010''''(10.0.26.2)'
00001010''0000000000011''011''00''000010''''(10.0.27.2)'

'
1'(local)'

'
8'

'
1'

'
8'

00001010''0000000001000''000''01''000001''''(10.0.64.65)'
00001010''0000000001000''001''01''000001''''(10.0.65.65)'
00001010''0000000001000''010''01''000001''''(10.0.66.65)'

'

2'(Clos)'
'

5'
'

0'
'

4' 00001010''0000000000101''000''10''000000''''(10.0.40.128)'
00001010''0000000000101''001''10''000000''''(10.0.41.128)'

c:'list'of'IP'addresses'for'the'server'in'stripe'

Figure 5: Illustration of the addressing scheme. “a” shows the IP address fields in flat-tree. In the “b” example, the server in strip connects

to switch #3, switch #8, and switch #5 respectively in the global, local, and Clos mode, where the number of concurrent paths, or 𝑘, is
chosen to be 16, 8, and 4. The IP addresses assigned to this server are shown in “c”. All these addresses for every flat-tree topology mode

are preconfigured on the server.

4.1 MPTCP
MPTCP has been standardized and widely used in academia
and industry [21]. The kernel implementation has been re-
leased [2]. MPTCP establishes subflows via multi-homing: the
end hosts using multiple IP addresses to distinguish paths. In
flat-tree, servers have one uplink only, so we must associate
multiple IP addresses to a single NIC. IP aliasing gives the
solution by setting multiple virtual network interfaces. These
virtual interfaces are linked to the physical interface by de-
fault, so traffic with different IP addresses can be forwarded
by the physical interface.

The full-mesh option in MPTCP allows subflows with dif-
ferent combinations of the source-destination IP address pairs.
For instance, with 2 IP addresses on both the sender and the
receiver, we obtain 2×2 = 4 subflows. Therefore, the number
of IP addresses per server is the square root of the number
of concurrent paths, or 𝑘 in 𝑘-shortest-path routing. Not all
subflows are needed sometimes. For example, 8-shortest-path
routing requires 3 IP addresses per server, thus creating one
extra subflow. In such case, a straightforward workaround
is to limit the routing logic to the necessary subflows only,
and MPTCP will not allocate traffic to subflows with no
end-to-end reachability.

This simple way of assigning IP addresses defines a flat
address space, which may be inefficient considering the great
number of servers in a large data center. The property of
MPTCP to send traffic only with routable addresses gives
the freedom for more intelligent addressing mechanisms. Gen-
erally, address assignment depends on the structure of the
network and serves for the ease of routing. This task is par-
ticularly difficult for flat-tree, which has completely different
network structures and routing paths for each topology. We
propose a customized addressing scheme specific to the flat-
tree architecture in the next subsection.

4.2 𝑘-Shortest-Path Routing
In 𝑘-shortest-path routing, there are 𝑘 routes for every source-
destination server pairs. A critical consequence of the enor-
mous number of paths is the explosion of the network states.
For efficient routing, every transit switch needs to be config-
ured with the forwarding rules of the 𝑘 paths for all server
pairs. Let 𝑛 and 𝑁 be the number of servers and switches in
the data center and 𝐿 be the average path length, the average

number of network states per switch is 𝑛2×𝑘×𝐿
𝑁

. For a large

data center, this number can easily reach tens of million, far
exceeding the storage and processing capacity of switches.
𝑘-shortest-path routing requires matching both the source
and destination IP addresses, and traditional ways of aggre-
gation, such as destination IP lookup or prefix matching, do
not readily work. A switch may forward packets for the same
receiver to different ports, because they need to take different
routes. Servers can be relocated to different switches under
different flat-tree topology modes, making the definition of
common prefix very challenging. We need novel approaches
to factoring down the number of network states.

4.2.1 Addressing. We have two important observations
from the flat-tree architecture and from an extensive analysis
of the computed 𝑘-shortest paths in the network.

Observation 1: A server is connected to one and only one
ingress/egress switch, regardless of the fact that it may be
relocated to a different ingress/egress switch as the topology
changes. So, there is no path diversion between servers and
the connected ingress/egress switches.

Observation 2: The number of equal-cost paths is small2

in the approximate random graph flat-tree creates. The 𝑘-
shortest paths between server pairs are nearly deterministic,
with uncommon exception of ties. So, the 𝑘-shortest paths
between ingress and egress switches almost capture the full
set of selected paths between source and destination servers.

Given these observations, it is promising to conduct prefix
matching on the ingress/edge switch level. This way, the
average number of network states per switch is reduced from
𝑛2×𝑘×𝐿

𝑁
to 𝑆2×𝑘×𝐿

𝑁
, 𝑆 being the number of ingress/egress

switches. Usually 20 to 40 servers are connected to a top-of-
rack switch (ToR) in a data center, so the number of network
states can be reduced by a factor of 400 to 1600.

As discussed previously, the major difficulty in flat-tree
is server mobility. To guarantee common prefix for servers
under the same ingress/egress switch, we need a different set
of IP addresses for each flat-tree topology mode. Because we
aim to change the network topology at run time by software,

2Having few equal-cost paths does not imply poor failure resiliency.
Like random graph networks, flat-tree can and should use paths of
different lengths for high throughput. It has been established that
throughput degrades more gracefully in random graph networks than
in fat-tree under failure [41]. Because flat-tree approximates random
graph networks, we expect flat-tree to be resilient to failure as well,
although more thorough evaluations are left to future work.

301

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA Y. Xia et al.

it is infeasible to reset the server IP addresses manually for
each topology. Thanks to the property of MPTCP to send
traffic only with routable addresses, we can preconfigure all
possible IP addresses for each topology onto the servers and
let the network controller dynamically load the routing logic
for the subset of addresses particular to the topology in use.

Our definition of the address space is shown in Figure 5a.
We assume IPv4 addresses and allocate IP addresses within
the private 10.0.0.0/8 block. The first 13 bits after the fixed
heading octet represent the switch ID of the ingress/egress
switch. In flat-tree, all switches may serve as an ingress/egress
switch. We associate each switch with a unique ID, which
is not changed with the conversion of topology. This 13-
bit field allows for 8196 switches, which is sufficient for a
large-scale data center. The next 3 bits are for the path
ID in the 𝑘-shortest paths. As aforementioned, MPTCP
distinguishes paths by different combinations of IP addresses
between server pairs. This 3-bit field allows for 8 addresses at
sender/receiver and thus supports 82 = 64 concurrent paths
at most, covering the range of 𝑘 most data centers will use.
The next 2 bits are used to specify the 3 possible flat-tree
topologies. The rest 6 bits show the server ID under the
ingress/egress switch. Because of the limited IPv4 address
space, we cannot afford to assign a unique ID for every
individual server. So, these IDs are reused for servers under
different ingress/egress switches. This 6-bit field supports 64
servers per switch, which is enough for the 20 to 40 servers
per ToR in most data centers. By this address assignment,
we match the /24 prefix at the ingress/egress switches. This
addressing scheme can be easily extended to IPv6 addresses,
which even support globally unique server IDs.

Figure 5b shows an example of the address assignment.
The server in stripe is connected to 3 different ingress/egress
switches under different flat-tree modes. The servers under
the same ingress/egress switch are ordered from left to right,
so the server ID in the global, local, and Clos mode is 2,
1, and 0 respectively. The number of concurrent paths, or
𝑘, can be different under each mode, because each topology
may have optimum transmission performance with a different
𝑘. In this example, 𝑘 equals 16, 8, and 4 for each topology,
so we need 4, 3, and 2 IP addresses accordingly. Figure 5c
lists the allocated IP addresses according to our addressing
scheme. All these addresses for every flat-tree topology are
preconfigured on the server at deployment time.

One possible problem is the overhead of MPTCP probing
unused IP addresses for potential paths. In our small testbed
with 4 concurrent paths, as shown in Section 5.3, we imple-
ment this addressing mechanism (6 addresses per server, 2
for each topology) as well as the naive address assignment (2
addresses per server, no unnecessary addresses). We observe
no noticeable difference in throughput between the two ap-
proaches. Whether the overhead is a valid concern in large
data centers is the direction of future work.

4.2.2 Source Routing. A common solution to relieving
state management at switches is source routing [29, 35, 42].
Segment routing is a natural fit to this request in SDN [6]. In
segment routing, the 𝑘-shortest-path routing algorithm can

Table 2: List of flat-tree topologies for evaluating the control
system. Abbreviations: Edge Switch (ES), Aggregation Switch

(AS), Core Switch (CS), Upstream Port (UP), Downstream Port

(DP), Oversubscription Ratio (OR).

ID #ES #AS #CS OR OR #Server
(#UP,#DP) (#UP,#DP) (#DP) at ES at AS

topo-1 128 (8,32) 128 (8,8) 64 (16) 4 1 4096

topo-2 72 (6,24) 72 (6,6) 36 (12) 4 1 1728

topo-3 128 (8,64) 128 (8,8) 64 (16) 8 1 8192

topo-4 128 (8,32) 64 (16,16) 32 (32) 4 1 4096

topo-5 128 (16,32) 128 (8,16) 64 (16) 2 2 4096

topo-6 128 (16,32) 64 (32,16) 32 (32) 2 2 4096

be implemented in the Path Computation Element (PCE),
an equivalent of the centralized network controller, which
enforces per-route states only at ingress switches. It relies
on the MPLS [36] and IPv6 architecture. The ingress switch
encodes the hops of a path as a stack of MPLS labels. The
transit switches forward packets by dumb matching of the
label on top of the stack and pop it upon completion.

Not all data centers have the MPLS and IPv6 forward-
ing fabric, so we provide an alternative solution in the bet-
ter recognized OpenFlow paradigm. Source routing is not
supported in OpenFlow by default. From the literature of
workarounds [29, 35, 42], we pick a readily deployable ap-
proach without modification of the OpenFlow protocol [29].
We encode the path, represented as a list of next-hop output
ports, into the source MAC address and use TTL as the
location pointer in the path. Flat-tree is a small diameter
network, where paths traverse less than 3 switches on av-
erage [47]. The 48-bit MAC address is able to hold 6 hops
for switches having as many as 256 ports, which is sufficient
for the need of the network. OpenFlow 1.3 allows matching
arbitrary bits of a given field [4]. We can thus concatenate
the transit hops in the MAC address and let intermediate
switches match different bits using a mask depending on
the TTL. For instance, if TTL equals 253 (third hop), we
apply the mask 0x00:00:ff:00:00:00 on the MAC address and
match the extracted bits to all possible 256 ports to decide
the right output port. This way, we need an entry per TTL
per output port. So, the number of OpenFlow rules on the
transit switches is 𝐷 × 𝐶, where 𝐷 is the diameter of the
network and 𝐶 is the switch port count. This number is at
most a thousand, far below the capacity of an OpenFlow
switch. These rules remain the same as the flat-tree topology
changes, so they can be preconfigured statically.

With source routing, the number of network states per
ingress/egress switch is reduced to 𝑆 × 𝑘. This number is at
most a few tens of thousand, within the capacity of high-end
OpenFlow switches [29]. There is large room for optimization
to further bring down this number. For example, in public
clouds, tenants request virtual clusters where only machines
within the cluster talk to each other. In this case, we can
set in-cluster routing logic, which involves a small number of
ingress/egress switches. Traffic is skewed in many enterprise
data centers [13–15, 30, 38]. We can use diverse paths (large
𝑘) for a small number of elephant flows, and simple paths
(small 𝑘) for a large number mice flows.

4.3 Topology Conversion
The conversion delay of flat-tree topologies is determined by
the switching delay of the converter switches and the delay

302

A Tale of Two Topologies SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

traffic-1 traffic-2 traffic-3 traffic-4
0

0.5

1

1.5
1

.0
0

1
.0

0

1
.0

0

1
.0

0

1
.3

7

1
.0

2

1
.0

0

1
.0

9

0
.9

9

0
.6

2

0
.9

6

1
.0

21
.1

1

1
.0

1

0
.9

3

1
.0

11
.1

2

1
.0

0

0
.9

6

1
.0

1

traffic-1 traffic-2 traffic-3 traffic-4
0

0.5

1

1.5

2

1
.0

0

1
.0

0

1
.0

0

1
.0

0

1
.3

8

1
.0

2

1
.0

0

1
.5

3

0
.6

6

0
.7

7 0
.9

5

1
.4

3

0
.9

7

1
.0

0

0
.9

5

1
.4

3

1
.0

1

1
.0

1

0
.9

6

1
.4

3

traffic-1 traffic-2 traffic-3 traffic-4
0

0.5

1

1.5

1
.0

0

1
.0

0

1
.0

0

1
.0

0

1
.3

2

1
.0

4

1
.0

4 1
.1

9

1
.1

1

0
.8

0 0
.9

4 1
.1

1

1
.2

0

1
.0

2

0
.9

5 1
.1

1

1
.2

0

1
.0

2

0
.9

5 1
.1

2

traffic-1 traffic-2 traffic-3 traffic-4
0

0.5

1

1.5

1
.0

0

1
.0

0

1
.0

0

1
.0

0

1
.3

5

1
.0

2

1
.0

3 1
.1

6

1
.1

3

0
.6

5

0
.9

4 1
.0

91
.2

4

1
.0

1

0
.9

5 1
.0

81
.2

3

1
.0

1

0
.9

6 1
.0

9

LP minimum LP average 4-way MPTCP 8-way MPTCP 12-way MPTCP

(a) topo-1 global (b) topo-1 local (c) topo-2 global (d) topo-5 global

N
o

rm
a

liz
e

d
 t
h

ro
u

g
h

p
u

t

Figure 6: Average flow throughput normalized against LP minimum on selected flat-tree topologies

of changing the routing logic. Depending on the realization
technology, the switching delay of converter switches ranges
from several 𝜇s to hundreds of ms [3, 19, 20, 46]. The net-
work controller takes roughly 1ms to add/delete a network
state [27, 37]. Instead of streaming the states all from a single
network controller, we can speed up the state distribution
by having a set of controllers each managing a number of
switches. We designate a logically centralized controller to
maintain the global network graph. It observes link failures
and updates the graph, which happens infrequently and does
not cause heavy burden. The 𝑘-shortest-path routing algo-
rithm is easily parallelizable, because the computation of
paths between different nodes is independent. So, the dis-
tributed controllers can either work as dumb agents of the
logically centralized controller and preload paths from it, or
compute paths independently based on a consistent network
graph. Following the trend of building customized switches
for data centers [39], it is conceivable to push the computation
to switches. This way, switches can update network states
locally on simple signaling of topology change. The paths and
the resulting network states can also be precomputed and
stored into a table in memory to save the computation time.
With these implementation options, we estimate the delay of
changing the routing logic to be on the order of seconds.

From the network operator’s perspective, topology con-
version in flat-tree is similar to network upgrade. Network
operators can plan when conversions should happen and are
fully aware of the impact of the change. They can convert
the topology gradually involving some of the network devices,
so converter switches need not be coordinated to react all at
the same time. Existing methods for updating or replacing
a switch in the network, e.g. draining parts of the network
incrementally before making the changes, can be used to
avoid traffic disruption.

5 EVALUATION
Our prior study has demonstrated the theoretical perfor-
mance benefits of flat-tree [47]. We compared its average
path length to random graph networks, and ran a linear
programming simulator to evaluate the throughput of syn-
thetic data center traffic patterns assuming optimal routing.
In summary, flat-tree well approximates random graph and
two-stage random graph networks when functioning in global
and local mode respectively: the difference in average path
length is within 5% (Figure 5 and 6 in [47]) and the difference
in throughput is less than 6% (Figure 7 and 8 in [47]).

In this paper, we answer several key questions about the
flat-tree performance with more comprehensive and realistic
experiments. Because the linear programming simulations ig-
nore the overhead of practical routing and transport protocols,
we first evaluate the performance of 𝑘-shortest-path routing
and MPTCP to see how close the throughput they achieve is
to the theoretical bound. We use the MPTCP packet-level
simulator [1] and run extensive experiments given a series
of synthetic traffic patterns on flat-tree networks of different
layouts. Next, we feed the simulator with several data center
traffic traces to understand the transmission performance
under real settings. Finally, we implement flat-tree on a hard-
ware testbed and run Spark and Hadoop jobs to measure the
performance improvement to real data center applications.

5.1 Is 𝑘-shortest-path routing with
MPTCP efficient enough?

We construct various flat-tree networks based on generic
Clos networks with different parameter settings [18]. Table 2
lists the evaluated flat-tree topologies. We use topo-1 as the
baseline topology and create other topologies by varying the
network scale, oversubscription ratio, and arrangement of
switches. topo-1 has 4:1 oversubscription at edge switches
only. topo-2 is a proportional down-scale of topo-1. topo-3 is
two times more oversubscribed at the edge than topo-1. topo-
4 replaces the aggregation and core layers of topo-1 with fewer
switches of larger port counts. topo-5 moves half of topo-
1’s oversubscription to the aggregation switch level. topo-6
replaces the aggregation and core switches of topo-5 with
larger ones. These topologies capture the major variations in
Clos networks. We have flat-tree function in both global and
local mode for each topology.

A standard approach for evaluating routing in intercon-
nection networks is to measure the throughput of flows given
well-studied traffic patterns [18], so we use the following
widely used synthetic traffic patterns to drive the simulation.

Permutation (traffic-1): every server sends a single flow
to a unique server other than itself at random. This pattern
creates uniform traffic across the network.

Pod Stride (traffic-2): every server sends a single flow to
its counterpart in the next Pod. This traffic pattern creates
heavy contention in the network core.

Hot spot (traffic-3): every 100 servers form a cluster, in
which one server broadcasts to all the others. It simulates
the multicast phase in many machine learning applications.

303

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA Y. Xia et al.

−1
0
1
2
3
4
5
6
7
8
9

10
11

MPTCP LP avg LP min

traffic−1

Fl
ow

 th
ro

ug
hp

ut
 (G

bp
s)

−1
0
1
2
3
4
5
6
7
8
9

10
11

MPTCP LP avg LP min

traffic−2

Fl
ow

 th
ro

ug
hp

ut
 (G

bp
s)

−1
0
1
2
3
4
5
6
7
8
9

10
11

MPTCP LP avg LP min

traffic−3

Fl
ow

 th
ro

ug
hp

ut
 (G

bp
s)

−1
0
1
2
3
4
5
6
7
8
9

10
11

MPTCP LP avg LP min

traffic−4

Fl
ow

 th
ro

ug
hp

ut
 (G

bp
s)

Figure 7: Box plots to show the distribution of flow throughput on the topo-1 topology under flat-tree global mode (topo-1 global).

MPTCP uses 8 paths. The box contains the 25th to 75th percentiles of the data. The whisker lines extending above and below the box

cover the data within 3 times the box range. The data in dots beyond the whisker are outliners. The bold line in the middle of the box
shows the median and the diamond shows the average.

Many-to-many (traffic-4): every 20 servers form a cluster
with all-to-all traffic. This traffic pattern simulates the shuffle
phase in MapReduce jobs.

We also vary 𝑘, the number of concurrent paths in 𝑘-
shortest-path routing, to evaluate the sensitivity of through-
put against it. Given the above traffic, we compare the flow
throughput from simulation to the optimum bandwidth al-
location, which is the solution to the multi-commodity flow
problem [32]. We make two linear programming (LP) for-
mulations with different optimization goals: 1) maximizing
the minimum flow throughput (denoted as “LP minimum”)
to achieve ideal load balancing; 2) maximizing the average
flow throughput (denoted as “LP average”) to achieve best
network utilization.

Figure 6 shows the average flow throughput on selected
topologies, and the topologies not shown have similar trends.
We normalize against LP minimum for each evaluated method
for readability, as throughput numbers are vastly different
in scale. The number of concurrent paths, 𝑘, affects the
MPTCP performance. If 𝑘 is too small, the path diversity
cannot be fully exploited, thus many links are under-utilized.
In these experiments, 8 concurrent paths is sufficient, and
larger 𝑘 cannot improve the throughput further. This result
is consistent with the performance of MPTCP and 𝑘-shortest-
path routing in random graph networks [41].

𝑘-shortest-path routing plus MPTCP reaches a reasonable
middle ground between LP minimum and LP average. To
scrutinize at the throughput of individual flows, we zoom
in on topo-1 global mode and show the distribution of flow
throughput with box plots in Figure 7. Neither LP minimum
nor LP average is realistic. To balance the load among flows,
LP minimum stops allocating residual bandwidth after it
has successfully maximized the minimum flow throughput.
LP average assigns some zero throughputs and some high or
even full throughputs to maximize the network utilization.
MPTCP balances between these extremes. It achieves higher
average throughput than LP minimum, and the variance of
flow throughput is smaller than LP average. Leveraging multi-
paths and congestion control, MPTCP can dynamically adapt
to the link utilization to get high throughput and maintain
fair bandwidth sharing across flows.

From the above results, we conclude that 𝑘-shortest-path
routing plus MPTCP is efficient enough. With the right
choice of 𝑘, it constantly achieves comparable throughput to

optimal bandwidth allocation from LP solutions given a set
of traffic patterns on diverse flat-tree topologies. It balances
between high network utilization and load balancing, which
are important indicators of good performance in practice.

5.2 Does flat-tree handle real traffic well?

To evaluate the transmission performance of flat-tree with
real data center traffic, we need a practical network topology.
Large-scale data center network designs in recent years show
the trend of non-blocking switch fabric with oversubscription
only at the network edge [38, 39]. We follow this trend to use
topo-1 as a representative flat-tree topology for the remaining
simulations. We run traffic traces from 4 Facebook data
centers each carrying different services. They are from the
following two sources.

1) We obtain the one-hour trace in a Hadoop data center
(denoted as Hadoop-1) from the Coflow benchmark [5], which
contains aggregated rack-level traffic through a 1Gbps single-
switch network core. Our flat-tree network uses 10Gbps links
and has 8 uplinks per edge switch. For each rack-to-rack flow
from the trace, we create 8 flows between servers under the
source and destination edge switches to stress the switch
uplinks and give 10 times the original traffic volume to each
of the 8 flows to adjust the bandwidth difference.

2) We obtain traffic statistics for 3 other data centers
(denoted as Hadoop-2, Web, and Cache) from the Facebook
measurement study [38]. The full traces are not released,
so we generate our own traces based on the publicly shared
sampling data [8] and the reported results from the paper [38].
The source and destination servers of the flows are inferred
from the sampling data. The flow size and the flow arrival
rate are reverse-engineered from Figure 6 and Figure 14 in
the paper. We omit inter-data-center traffic in the data.

The traffic has the following characteristics.
Hadoop-1: the trace reflects the shuffle phase of MapRe-

duce jobs. The traffic does not have clear locality. We observe
one-to-many, many-to-one, and many-to-many traffic involv-
ing a large number of machines network-wide.

Hadoop-2: different from the above trace, the traffic
shows strong rack and Pod level locality. 75.7% of the traffic
is intra-rack, and almost all the remaining traffic is intra-Pod.

Web: the traffic has strong Pod level locality. There is a
tiny amount of intra-rack traffic. Around 77% of the traffic
is intra-Pod, and the rest is inter-Pod.

304

A Tale of Two Topologies SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

Flow completion time (ms)
10

2
10

3
10

4
10

5
10

6
10

7

C
D

F

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

(a) Hadoop-1

Flow completion time (ms)
10

-1
10

0
10

1
10

2

C
D

F

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

(b) Hadoop-2

Flow completion time (ms)
10

-1
10

0
10

1

C
D

F

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

(c) Web

Flow completion time (ms)
10

-1
10

0
10

1
10

2

C
D

F

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

(d) Cache

Flat-tree global mode Flat-tree local mode Flat-tree Clos mode (k-shortest paths)

Flat-tree Clos mode (ECMP) Random graph Two-stage random graph

Figure 8: CDF of flow completion time in Facebook’s Hadoop-1, Hadoop-2, Web, and Cache data centers

Cache: the traffic shows even stronger Pod level locality.
There is almost zero intra-rack traffic. Around 88% of the
traffic is intra-Pod, and the rest is inter-Pod.

Figure 8 shows the distribution of flow completion time
of these different traffic traces. Regardless of the traffic, the
performance of flat-tree in the global mode is close to that
of the random graph, and the performance of flat-tree in the
local mode is close to that of the two-stage random graph. It
demonstrates that flat-tree well approximates random graphs
of different scales given real data center workloads, which is
consistent with the conclusion in the prior study [47].

In practice, Clos networks usually implement ECMP and
TCP. For fair comparison, we simulate the flat-tree Clos mode
with 𝑘-shortest-path routing and MPTCP as well to avoid
the handicap of less efficient routing and congestion control
mechanisms. As expected, the performance of flat-tree Clos
mode with ECMP and TCP is remarkably worse than the
other networks. For ECMP, the next hop at each switch is
determined pseudo-randomly by header field hashing, so each
TCP flow traverses only one of the equal cost shortest paths.
Being unable to use multi paths concurrently is especially
bad for large flows. In later discussions, we focus on the Clos
mode with 𝑘-shortest path routing and MPTCP.

Most importantly, we observe that different modes of flat-
tree are best suited for different types of traffic. In Figure 8(a),
for the network-wide traffic, flat-tree global mode has an order
of magnitude improvement over the Clos network. Flat-tree
local mode has similar performance to the global mode for two
reasons. First, the traffic is not intensive enough to saturate
the links on these topologies, although the Clos network is
already heavily congested. Second, there is a considerable
amount of intra-Pod traffic in the network-wide traffic. Since
the global mode has richer core bandwidth than the local
mode, we expect greater benefit from the global mode given
heavier traffic and more inter-Pod communications.

In Figure 8(b), the performance of flat-tree Clos mode
is the best due to the large proportion of intra-rack traffic.
Flat-tree local mode is the second best, because the topology
handles intra-rack traffic relatively well and there is still
around 24.3% intra-Pod traffic. Flat-tree global mode is not
very efficient for traffic with strong locality. For traffic with

Pod-level locality, as shown in Figure 8(c) and (d), flat-tree
local mode has the best performance, followed by the global
mode and the Clos mode. This result reflects the distribution
of network bandwidth. The global mode has less intra-Pod
bandwidth than the local mode, but the rich network-wide
bandwidth makes it more efficient than the Clos network. The
difference among topologies is more significant in Figure 8(d)
due to stronger locality and higher traffic volume.

These simulation results of real data center traffic on a
practical data center topology validate the design purpose
of flat-tree. Flat-tree can be configured into different modes
to optimize traffic with different locality features, i.e. Clos
mode for rack-level locality, local mode for Pod-level local-
ity, and global mode for no locality. If the network is used
for a different service, the network topology can be easily
reconfigured to adapt to the new traffic. This flexibility in
topology is particularly useful for public clouds where the
service requirements are constantly changing. For a produc-
tion data center like Facebook with integral parts of different
services, flat-tree can be used in the hybrid mode with various
service-specific zones, interconnected by the network core for
inter-zone communication. When the services are reorganized,
the network zones can be repartitioned to accommodate the
change of needs.

5.3 Is flat-tree implementable?

To explore the feasibility of implementing flat-tree in prac-
tice, we build the example network in Figure 2 on a hard-
ware testbed. As shown in Figure 9, it consists of 5 48-
port packet switches, one 192-port 3D-MEMS optical cir-
cuit switch (OCS), and 24 servers each with 6 3.5GHz dual-
hyperthreaded CPU cores and 128GB RAM. All links are
10Gbps. The first 4 packet switches are partitioned into edge
and aggregation switches in each Pod, and the last packet
switch is partitioned into the 4 core switches. The converter
switches are logical partitions of the OCS. To make the
testbed more manageable, we connect servers to converter
switches via an extra hop on packet switches.

We implement 𝑘-shortest-path routing and MPTCP for
all 3 flat-tree topologies. 𝑘 is set to 4 as it yields the best
performance in the simulation of this network. We realize
the addressing scheme as described in Section 4.2.1. Our

305

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA Y. Xia et al.

Pod$1

Pod$2

Pod$3

Pod$4

Core

LinkstoOCS
Linkstoservers Edge7aggr links

Linkstopacket$switches

Servers$
inPod2

Servers$
inPod1

Servers$
inPod4

Servers$
inPod3

Figure 9: A testbed implementing the flat-tree example in Figure 2

packet switches use a legacy OpenFlow 1.0 image. It does not
support arbitrary bits matching of a field, which is necessary
for source routing as shown in Section 4.2.2. So, we conduct
prefix matching for the source and destination IP addresses
on the switches a path traverses. The maximum number of
OpenFlow rules per switch under each topology is 242, 180,
and 76 respectively. The difference is due to the different
number of ingress/egress switches in each topology. With
source routing, these numbers will be significantly less.

We demonstrate the functionality of the testbed with an
iPerf throughput experiment. On every server, we send iPerf
traffic to the 3 servers with the same index in the other 3
Pods. This traffic pattern enables the measurement of the
core bandwidth in the network. iPerf is set to update the
flow throughput every 0.5 second. Throughout the 5-minute
experiment, we change the network topology to different flat-
tree modes. We add up the throughputs of individual flows
to obtain the real-time bidirectional core bandwidth.

Figure 10 plots the variation of core bandwidth as we
change the network topology. The local mode and the Clos
mode have around 145Gbps average total throughput. Com-
pared to the Clos mode, the local mode rearranges servers
within Pods only, so there is no change to the core bandwidth.
Our testbed is 1.5:1 oversubscribed, so the Clos network has
24× 10Gbps/1.5 = 160Gbps total bandwidth. This result
shows that the overhead of MPTCP and 𝑘-shortest-path rout-
ing is within 9.38% of the bandwidth, which is reasonable
as the MPTCP packet processing lays extra burden on CPU
and 𝑘-shortest-path routing is not perfect. The average total
throughput in the global mode is around 185Gbps. With the
power of convertibility, the network core bandwidth increases
by 27.6% in this small testbed. We envision greater improve-
ment in real data centers with a larger number of switches
and more flexibility of conversion.

From the figure, we observe that iPerf reaches the maxi-
mum throughput in 2s to 2.5s after a topology change. Table 3
shows the accurate measurement of the conversion delay by
the control software. The delay can be broken down into the
time for reconfiguring the OCS, deleting old OpenFlow rules,
and adding new OpenFlow rules. The rule deletion and instal-
lation delay are proportional to the number of rules for the

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 3000
20
40
60
80

100
120
140
160
180
200
220

Time (s)

N
et

w
or

k
co

re
 b

an
dw

id
th

 (G
bp

s)

Global mode

Clos mode

Global mode

Local mode

2.5s
2s

2.5s

Figure 10: Summation of iPerf throughput every 0.5 second on

the testbed with different flat-tree modes. Every server sends iPerf
traffic to its counterparts in the other Pods to saturate the network
core. Traffic adapts to the topology change in 2 to 2.5 seconds.

topology before and after conversion. Our implementation
has room for improvement. First, the legacy switches process
rules more slowly than the main-stream technology [27, 37].
Second, the packet switches and the OCS are configured
sequentially, and this can be easily parallelized. Even with
these artifacts, the network topology can be converted in
roughly 1s and the application adapts to the topology change
in another 1.5s.

5.4 Does convertibility benefit
applications?

Most data center applications are computation-oriented, inter-
node communications serving the purpose of exchanging in-
termediate computation data. For this reason, the behavior
of data transmission is influenced by many factors in the
computation framework. For instance, read/write data serial-
ization/deserialization adds to the end-to-end data transmis-
sion time; imperfect synchronization of computation nodes
disorganizes traffic patterns; garbage collection may block
communications, etc. In our testbed, converting the network
topology from the Clos mode to the global mode improves the
core bandwidth by 27.6%. However, with all these overheads
from the computation framework, whether the bandwidth
increase can be translated into acceleration of data center
applications is yet another question.

We answer this question by running Spark and Hadoop, the
most widely used computation frameworks, on our testbed.
Among the 24 servers, we set the first server as the master
node and all the other servers as slave nodes. We change
the network topology and compare the end-to-end data read
time under different flat-tree modes. The characteristics of
the jobs are as follows.

Spark broadcast: we run Word2Vec, the iterative ma-
chine learning job for document feature extraction. In each
iteration, the master node broadcasts the updated model to
all workers. We choose the “torrent” option for the broadcast
operation to distribute the data in the BitTorrent fashion.
Spark promotes in-memory computation, so the data to be
transmitted is readily available in memory, although data
serialization and deserialization are needed.

Hadoop shuffle: we run the Sort job on Tez [9], a variant
of Hadoop MapReduce. It has a heavy shuffle phase, where
all the nodes as mappers send data to a subset of nodes as

306

A Tale of Two Topologies SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

Table 3: Conversion delay of the experiment in Figure 10

Topology Configure OCS Delete rule Add rule Total

Global 160ms 477ms 644ms 1281ms
Local 160ms 202ms 482ms 844ms
Clos 160ms 635ms 209ms 1004ms

reducers. We store the data on a RAM disk to prevent the
hard drive being the bottleneck of data read/write.

Figure 11 shows the average end-to-end data read time
and the duration of the communication phase for the above
two applications. The end-to-end data read time includes
the time for data serialization and deserialization. In the
Spark broadcast application, flat-tree global mode reduces
the average data read time by 10% and reduces the broadcast
phase duration by 16% compared to the Clos topology. In
the Hadoop shuffle application, the reduction in the average
data read time and in the shuffle phase duration are 10.5%
and 8% respectively. With this visible difference, we conclude
that the improvement of network topology can be reflected in
the application performance. The global mode only slightly
outperforms the local mode, because their network structures
are not hugely different at this small scale (Figure 2c vs. 2d).
The topologies of these two modes will become less alike as
the network scale grows, thus we expect more considerable
performance improvement to applications from the change
of topology in a large-scale data center.

6 RELATED WORK

Flat-tree is distinguished from other data center network
architectures such as [10–12, 23, 24, 41] by its convertibility.
Each of these fixed topologies has sweet spots for particular
traffic patterns [40], whereas flat-tree is able to convert the
topology to adapt to different workloads. These architectures
have varying implementation complexity and performance
properties. With the power of convertibility, flat-tree can be
implemented more easily like a Clos network and has better
performance like random graph networks.

Flat-tree also goes beyond the recent proposals of config-
urable data center network architectures. One group of works
creates ad-hoc links at run time to alleviate hot spots [19,
22, 25, 26, 43, 44, 48, 49, 51]. Another group constructs
an all-connected flexible network core with high bandwidth
capacity [3, 16, 17, 33, 34]. However, these solutions are con-
strained by the port count of central switches when enabling
configurability [16, 19, 43], the number of optical wavelengths
that can be reused [3, 16, 17, 33, 34], or the interference and
attenuation of wireless signals [22, 25, 26, 51]. Due to these
scalability concerns, only a small number of connections can
be added as a local remedy or the size of the network is
limited to a small scale. Flat-tree is the first architecture to
realize globally convertible data center networks at large scale.
It is fundamentally different from these previous work. First,
instead of adding new links to the network, it repurposes
existing links to increase the total bandwidth with more effi-
cient topologies. Second, rather than using central switches,
it distributes a set of small port-count converter switches
across the network to spread convertibility. Third, converter
switches simply pipe out data packets through wired channels,
making technologies for multiplexing signals or maintaining

(a) Spark broadcast

Global Local ClosD
a

ta
 f

lo
w

 r
e

a
d
 d

u
ra

ti
o

n
 (

m
s
)

0

5

10

15

20

1
7

.0
8

1
7

.1
7

1
9

.1
2

0

2.5

5

7.5

10

8
.9

6

9
.3

2

9
.7

4

Communication phase durationData flow read duration

(b) Hadoop shuffle

Global Local ClosD
a

ta
 f
lo

w
 r

e
a

d
 d

u
ra

ti
o

n
 (

s
e

c
)

0

1

2

3

4

5

2
.9

8

2
.9

9

3
.3

1

B
ro

a
d

c
a

s
t
p

h
a

s
e

 d
u

ra
ti
o

n
 (

s
e

c
)

0

1

2

3

4

5

3
.6

8

3
.7

6 4
.3

8

S
h

u
ff
le

 p
h

a
s
e

 d
u

ra
ti
o

n
 (

s
e

c
)

Figure 11: Average data flow read duration (left y-axis) and av-
erage communication phase duration (right y-axis) in the Spark

broadcast and Hadoop shuffle applications under different flat-tree

topology modes

signal intensity unnecessary. Fourth, besides reconfiguring
switch-to-switch links as done in other proposals, flat-tree
also reconfigures server-to-switch links to facilitate greater
flexibility in the network structure.

7 CONCLUSION

Flat-tree is the first effort towards building convertible data
center networks. By converting between Clos and approxi-
mate random graph of various scales, it achieves the conven-
tionally conflicting goals of easy implementation and good
performance. Convertibility can be achieved by a set of small
port-count converter switches distributed across the network.
They have low cost and can be packaged into Pods to ease
deployment. We find flattening Clos’ tree structure does not
require global rewiring. With regular wiring patterns between
Pods and core switches and simple connections between ad-
jacent Pods, we effectively approximate randomness in the
network core and at the same time obtain low wiring com-
plexity. Multi-path routing and congestion control are crucial
to exploiting the path diversity in flat-tree, and we have
shown that aggregation strategies can be applied to avoid an
explosion of network states. Existing routing and transport
protocols combined with our architecture-specific state aggre-
gation schemes can balance between high network utilization
and fair bandwidth sharing among flows. We explore the
implementability of flat-tree using simulations with real data
center traffic and a testbed implementation of the system.
We observe flat-tree can optimize for diverse workloads with
different topology modes, and it brings performance improve-
ments to applications with greater core bandwidth. Flat-tree
is merely one design point in the broad space of convertible
data center networks. We believe our experience will motivate
future studies on convertibility.

ACKNOWLEDGEMENT
We would like to thank our shepherd Mohammad Alizadeh
and the anonymous reviewers for their thoughtful feedback.
This research was sponsored by the NSF under CNS-1422925
and CNS-1305379, an IBM Faculty Award, and by Microsoft
Corp.

REFERENCES
[1] 2009. MPTCP simulator. (2009). http://nrg.cs.ucl.ac.uk/mptcp/

implementation.html
[2] 2009. MultiPath TCP - Linux Kernel implementation. (2009).

http://multipath-tcp.org/pmwiki.php/Main/HomePage

307

http://nrg.cs.ucl.ac.uk/mptcp/implementation.html
http://nrg.cs.ucl.ac.uk/mptcp/implementation.html
http://multipath-tcp.org/pmwiki.php/Main/HomePage

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA Y. Xia et al.

[3] 2010. Plexxi. (2010). http://www.plexxi.com/
[4] 2012. OpenFlow Switch Specification, Version 1.3.0. Open Net-

working Foundation (2012).
[5] 2015. Coflow-Benchmark. (2015). https://github.com/coflow/

coflow-benchmark
[6] 2015. Segment Routing: Prepare Your Network for New Business

Models White Paper. Cisco Technology White Paper (2015).
[7] 2017. 40G short range transceiver. (2017). http://www.fs.com/

products/17931.html
[8] 2017. Facebook Network Analytics Data Sharing. (2017). https:

//www.facebook.com/groups/1144031739005495/
[9] 2017. Tez. (2017). https://tez.apache.org/

[10] H. Abu-Libdeh, P. Costa, A. Rowstron, G. O’Shea, and A. Don-
nelly. August 2010. Symbiotic Routing in Future Data Centers.
In SIGCOMM ’10. New Delhi, India, 51–62.

[11] J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S. Schreiber.
November 2009. HyperX: Topology, Routing, and Packaging of
Efficient Large-scale Networks. In SC ’09. Portland, OR, 1–11.

[12] M. Al-Fares, A. Loukissas, and A. Vahdat. August 2008. A
Scalable, Commodity Data Center Network Architecture. In SIG-
COMM ’08. Seattle, Washington, USA, 63–74.

[13] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B.
Prabhakar, S. Sengupta, and M. Sridharan. August 2010. DCTCP:
Efficient Packet Transport for the Commoditized Data Center. In
SIGCOMM’10.

[14] T. Benson, A. Anand, A. Akella, and M. Zhang. January 2010.
Understanding Data Center Traffic Characteristics. SIGCOMM
CCR 40, 1 (January 2010), 92–99.

[15] P. Bod́ık, I. Menache, M. Chowdhury, P. Mani, D. A. Maltz, and I.
Stoica. August 2012. Surviving Failures in Bandwidth-constrained
Datacenters. In SIGCOMM ’12. Helsinki, Finland, 431–442.

[16] K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. Zhang,
X. Wen, and Y. Chen. April 2012. OSA: An Optical Switching
Architecture for Data Center Networks with Unprecedented Flex-
ibility. In NSDI ’12. San Jose, CA.

[17] K. Chen, X. Wen, X. Ma, Y. Chen, Y. Xia, C. Hu, and Q. Dong.
2015. WaveCube: A scalable, fault-tolerant, high-performance
optical data center architecture. In INFOCOM ’15. 1903–1911.

[18] W. Dally and B. Towles. 2003. Principles and Practices of
Interconnection Networks.

[19] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V.
Subramanya, Y. Fainman, G. Papen, and A. Vahdat. August
2010. Helios: A Hybrid Electrical/Optical Switch Architecture
for Modular Data Centers. In SIGCOMM ’10. New Delhi, India,
339–350.

[20] M. Fokine, L. E. Nilsson, Å. Claesson, D. Berlemont, L. Kjellberg,
L. Krummenacher, and W. Margulis. 2002. Integrated Fiber
Mach–Zehnder Interferometer for Electro-Optic Switching. Optics
Letters 27, 18 (September 2002), 1643–1645.

[21] A. Ford, C. Raiciu, M. Handley, S. Barre, and J. Iyengar. 2011.
Architectural Guidelines for Multipath TCP Development. RFC
6182 (2011).

[22] M. Ghobadi, R. Mahajan, A. Phanishayee, N. Devanur, J. Kulka-
rni, G. Ranade, P. A. Blanche, H. Rastegarfar, M. Glick, and
D. Kilper. August 2016. ProjecToR: Agile Reconfigurable Data
Center Interconnect. In SIGCOMM ’16. Florianopolis, Brazil,
216–229.

[23] C. Guo, G. Lu, Da. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y.
Zhang, and S. Lu. August 2009. BCube: A High Performance,
Server-centric Network Architecture for Modular Data Centers.
In SIGCOMM ’09. Barcelona, Spain, 63–74.

[24] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu. August
2008. DCell: A Scalable and Fault-Tolerant Network Structure
for Data Centers. In SIGCOMM ’08. Seattle, WA, USA, 75–86.

[25] D. Halperin, S. Kandula, J. Padhye, P. Bahl, and D. Wetherall.
August 2011. Augmenting Data Center Networks with Multi-
gigabit Wireless Links. In SIGCOMM ’11. Toronto, 38–49.

[26] N. Hamedazimi, Z. Qazi, H. Gupta, V. Sekar, S. R. Das, J. P.
Longtin, H. Shah, and A. Tanwer. August 2014. FireFly: A
Reconfigurable Wireless Data Center Fabric Using Free-space
Optics. In SIGCOMM ’14. Chicago, Illinois, USA, 319–330.

[27] K. He, J. Khalid, A. Gember-Jacobson, S. Das, C. Prakash, A.
Akella, L. E. Li, and M Thottan. 2015. Measuring Control Plane
Latency in SDN-enabled Switches. In SOSR ’15. Santa Clara,
CA, 1–6.

[28] C. Hopps. 2000. Analysis of an Equal-Cost Multi-Path Algorithm.
RFC 2992 (2000).

[29] S. A. Jyothi, M. Dong, and P. B. Godfrey. June 2015. Towards a
Flexible Data Center Fabric with Source Routing. In SOSR ’15.
Santa Clara, CA, 1–8.

[30] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken.
November 2009. The Nature of Data Center Traffic. In IMC ’09.
Chicago, Illinois, USA, 202–208.

[31] S. Legtchenko, N. Chen, D. Cletheroe, A. Rowstron, H. Williams,
and X. Zhao. 2016. XFabric: A Reconfigurable In-rack Network
for Rack-scale Computers. In NSDI’16. Santa Clara, CA, 15–29.

[32] T. Leighton and S. Rao. November 1999. Multicommodity Max-
flow Min-cut Theorems and Their Use in Designing Approximation
Algorithms. J. ACM 46, 6 (November 1999), 787–832.

[33] Y. J. Liu, P. X. Gao, B. Wong, and S. Keshav. August 2014.
Quartz: A New Design Element for Low-latency DCNs. In SIG-
COMM ’14. Chicago, Illinois, USA, 283–294.

[34] G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun,
T. Rosing, Y. Fainman, G. Papen, and A. Vahdat. August 2013.
Integrating Microsecond Circuit Switching into the Data Center.
In SIGCOMM ’13. Hong Kong, China, 447–458.

[35] R. M. Ramos, M. Martinello, and C. Esteve Rothenberg. 2013.
SlickFlow: Resilient source routing in Data Center Networks un-
locked by OpenFlow. In LCN ’13. 606–613.

[36] E. Rosen, A. Viswanathan, and R. Callon. 2001. Multiprotocol
Label Switching Architecture. RFC 3031 (2001).

[37] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W. Moore.
2012. OFLOPS: An Open Framework for Openflow Switch Evalu-
ation. In PAM’12. Vienna, Austria, 85–95.

[38] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren. Au-
gust 2015. Inside the Social Network’s (Datacenter) Network. In
SIGCOMM ’15. London, UK, 123–137.

[39] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R.
Bannon, S. Boving, G. Desai, B. Felderman, P. Germano, A.
Kanagala, J. Provost, J. Simmons, E. Tanda, J. Wanderer, U.
Hölzle, S. Stuart, and A. Vahdat. August 2015. Jupiter Rising: A
Decade of Clos Topologies and Centralized Control in Google’s
Datacenter Network. In SIGCOMM ’15. London, UK, 183–197.

[40] A. Singla. Designing Data Center Networks for High Throughput.
Ph.D. Thesis. University of Illinois at Urbana-Champaign.

[41] A. Singla, C. Y. Hong, L. Popa, and P. B. Godfrey. April 2012.
Jellyfish: Networking Data Centers Randomly. In NSDI ’12. San
Jose, California, USA, 1–14.

[42] M. Soliman. 2015. Exploring Source Routing as an Alternative
Routing Approach in Wide Area Software-Defined Networks.
Ph.D. Dissertation. Carleton University Ottawa.

[43] G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. S. E.
Ng, M. Kozuch, and M. Ryan. August 2010. c-Through: Part-time
Optics in Data Centers. In SIGCOMM ’10. New Delhi, India,
327–338.

[44] H. Wang, Y. Xia, K. Bergman, T. S. E. Ng, S. Sahu, and K.
Sripanidkulchai. 2013. Rethinking the Physical Layer of Data
Center Networks of the Next Decade: Using Optics to Enable
Efficient *-cast Connectivity. SIGCOMM CCR 43, 3 (July 2013),
52–58.

[45] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley. 2011.
Design, Implementation and Evaluation of Congestion Control
for Multipath TCP. In NSDI’11. Berkeley, CA, USA, 99–112.

[46] M. C. Wu, O. Solgaard, and J. E. Ford. 2006. Optical MEMS for
Lightwave Communication. Journal of Lightwave Technology 24,
12 (December 2006), 4433–4454.

[47] Y. Xia and T. S. E. Ng. November 2016. Flat-tree: A Convertible
Data Center Network Architecture from Clos to Random Graph.
In HotNets ’16. Atlanta, GA, 71–77.

[48] Y. Xia, T. S. E. Ng, and X. Sun. April 2015. Blast: Accelerat-
ing High-Performance Data Analytics Applications by Optical
Multicast. In INFOCOM ’15. Hong Kong, China, 1930–1938.

[49] Y. Xia, M. Schlansker, T. S. E. Ng, and J. Tourrilhes. 2015. En-
abling Topological Flexibility for Data Centers Using OmniSwitch.
In HotCloud ’15. Santa Clara, CA.

[50] Jin Y. Yen. 1971. Finding the K Shortest Loopless Paths in a
Network. Management Science 17, 11 (1971), 712–716.

[51] X. Zhou, Z. Zhang, Y. Zhu, Y. Li, S. Kumar, A. Vahdat, B. Y.
Zhao, and H. Zheng. August 2012. Mirror Mirror on the Ceiling:
Flexible Wireless Links for Data Centers. In SIGCOMM ’12.
Helsinki, Finland, 443–454.

308

http://www.plexxi.com/
https://github.com/coflow/coflow-benchmark
https://github.com/coflow/coflow-benchmark
http://www.fs.com/products/17931.html
http://www.fs.com/products/17931.html
https://www.facebook.com/groups/1144031739005495/
https://www.facebook.com/groups/1144031739005495/
https://tez.apache.org/

	Abstract
	1 Introduction
	2 Motivating Examples
	2.1 The Case for Convertibility
	2.2 Example Flat-tree Network

	3 Flat-tree Architecture
	3.1 Flat-tree Pod
	3.2 Pod-Core Wiring
	3.3 Inter-Pod Wiring
	3.4 Server Distribution
	3.5 Operation Modes
	3.6 Cost Analysis

	4 Control System
	4.1 MPTCP
	4.2 k-Shortest-Path Routing
	4.3 Topology Conversion

	5 Evaluation
	5.1 Is k-shortest-path routing with MPTCP efficient enough?
	5.2 Does flat-tree handle real traffic well?
	5.3 Is flat-tree implementable?
	5.4 Does convertibility benefit applications?

	6 Related Work
	7 Conclusion
	References

