Towards An Auditing Language for Preventing
Cascading Failures

Ennan Zhai and Ruzica Piskac
Yale University

“Disease prevention is better than diagnosis.” — World
Health Organization [_2]

1. BACKGROUND & MOTIVATION

Today’s cloud services heavily rely on replication tech-
niques to ensure reliability. As the underlying structures of
cloud services become complex, infrastructure components
may unwittingly share deep dependencies. These unexpected
common dependencies’ faults may result in cascading fail-
ures across the entire replication deployments, undermining
the reliability enhancement efforts |15} |9, |10} |16]].

In a recent Rackspace outage event [3]], for example, the
glitches on a core switch and its backup switch in the Rackspace
cloud caused multiple servers to be unaccessible, thus block-
ing customers from accessing their data in Rackspace. A
survey conducted by Gunawi et al. [[10] based on 500+ real-
world cloud outage reports revealed that cascading failures
resulting from only a small set of network-component faults
(called network weak spots) are the second most common
type of cloud outages.

Moreover, Dan Geer, a computer risk management special-
ist, pointed out “A more insidious source of common-mode
failures is a design fault, e.g., a killer bug, that causes re-
dundant copies of the same software process to fail under
identical conditions.” [8]]. For example, in an Amazon AWS
report [[1]], a killer bug on one Amazon EBS data collector
caused cascading failures across Relational Database Storage
(RDS) and its backups, affecting the entire Availability Zone.

There have been many diagnostic and forensic efforts pro-
posed to localize the root causes of network problems [6}
11} /13]] or software problems [5] after service outages occur.
However, these post-failure forensics require significant hu-
man interventions, and in the face of structurally complex
services, this leads to excessively prolonged failure recovery
time [[14]]. Therefore, a natural question is: rather than trying
to detect the root cause of a failure after it happens, can we
prevent cascading failures before they occur?

2. RepAudit FRAMEWORK

We introduce RepAudit, a novel framework that aims at
preventing cascading failures before cloud outages occur.
The main idea is to allow administrators to proactively audit

the underlying structures of a given replication deployment.
RepAudit enables an administrator to easily express hetero-
geneous auditing tasks (e.g., identifying network weak spots
and killer bugs potentially causing cascading failures). In
addition, RepAudit can also automatically generate new de-
ployment plans for improving the reliability of the original
replication deployment. With RepAudit, administrators can
understand potential cascading failure risks at an early stage.

We identify the following main technical challenges in
building RepAudit.

1. Auditing language. Currently administrators either write
risk-analysis scripts manually, which is error-prone and te-
dious, or adapt existing analysis tools to their specific pur-
poses. In both cases, it is hard to support heterogeneous
auditing tasks, since administrators need to fully understand
complex underlying structures of audited systems. To address
this issue, we propose a declarative domain-specific auditing
language, RAL. It is a high-level language that hides the de-
tails of system structures, so that administrators can easily
express their auditing tasks. An example of an RAL-program
is given in the top-left corner in Figure [l RAL programs
are parsed and executed by the auditing engine. Inside the
auditing engine, as shown in Figure[I] any target system’s
underlying structures are modeled using a fault graph [15]].
Broadly speaking, it is a data structure representing a system
as a directed acyclic graph (DAG) with logical gates.

2. Efficient and accurate auditing engine. RepAudit fun-
damentally differs from post-failure efforts that try to localize
root causes specific to observed outages. Proactive audit-
ing is required to be both accurate and efficient, because it
needs to search and assess cascading failure root causes in
the entire underlying structures of audited systems. For the
structurally complex cloud systems with tens of thousands
of components and multi-layered hardware/software stacks,
it is challenging to make fault graph analysis approaches
achieve both accuracy and efficiency. Inspired by successful
applications of SAT/SMT solvers to formal verification of
large-scale programs, we leverage them to construct fault
graph analysis algorithms. We mainly use weighted partial
MaxSAT solver [4], model counter [[7] and network trans-
formation [|12]]. These analysis algorithms are bases for the
language primitives in the auditing engine. Because of using

Auditing Program in RAL

let Server(“172.28.228.21") -> sl

let Server(“172.28.228.22") -> s2

let [sl, s2] -> rep

let FaultGraph(rep) -> ft

let RankRCG(ft, 2, NET, ft) -> ranklist

Auditing Results
1. {Corel[“75.142.33.98"]} |

2. {Aggl[“10.0.0.1"], Agg2[“10.0.0.2"]}

Auditing Engine

Weighted
MaxSAT solver

1

1

1

1

1 Repllca1 Repllcaz

! | INDaas E> E>CNF (A2) A (A1 VA3)
1 ﬁ m <Weight Vector>
1

Server4 (S4)
172.28.228.24

D §
erver3 (S3)
172.28.228.23,
‘Agg Switch1 Agg Switch2 Agg SW|tch3

(Agg1) (Agg2) (Agg3))'0003

10.0.0.1 10.0.0.2
Service Deployment
Core Router2
(Core2)

Core Router1 (network/software stacks)
75.142.33.99

Server1 (S1)
172.28.228.21

Server2 (S2
172.28.228.22!

(Core1)
75.142.33.98

Figure 1: A RepAudit workflow example.

these formal reasoning tools, RepAudit can simultaneously
offer accurate and efficient structural reliability auditing.
Figure|l{shows an example (similar to the Rackspace situ-
ation in §I). An administrator wants to proactively identify
network weak spots (specified by NET in RankRCG()) that
could potentially result in cascading failures. The admin-
istrator first expresses her auditing task by submitting the
auditing engine an auditing program in RAL. Then, the audit-
ing engine uses INDaaS [15]] to automatically generate a fault
graph modeling the systems of interest, and transforms the
generated fault graph into a Boolean formula in Conjunctive
Normal Form (CNF). Finally, the engine calls a weighted
partial MaxSAT solver to create the auditing results. They
are presented to the administrator and she understands that
the core router (i.e., Corel) is the “bottleneck” in her service.
In our preliminary evaluation, we run RepAudit on a real-
world cloud storage dataset consisting of 70,656-nodes. We
observe that RepAudit determines the top-20 critical root
causes 300x more efficient than the state-of-the-art auditing
tool [15]]. Furthermore, the returned results of RepAudit are
guaranteed to be 100% accurate within the given fault graph.

3. Automatically improving risky deployments. If an ad-
ministrator notices that their replication deployments have
cascading failure risks, trying to manually improve the de-
ployments is again an error-prone process. We, therefore,
extend RAL so that administrators can easily specify their
improvement goals. We also equip RepAudit with a repair
engine, which can automatically generate improvement plans
corresponding to those specified goals.

As an illustration, consider the example given in Figure
If the administrator wants to improve her current deploy-
ment to have failure probability lower than 0.05, she can

convey to the repair engine the following specification: goal
(failProb(ft) < 0.05 | ChNode | Agg3). This specifica-
tion states that the repair engine should generate plans for
making the failure probability of the replication deployment
lower than 0.05. Additionally, the specification also states
that we require moving a replicated state to more independent
replica servers (thus, the ChNode option), and the new deploy-
ment must contain the switch Agg3. Taking this specification
as input, the repair engine generates two alternative plans.

Plan 1: Move replica data from S1 => S4
Plan 2: Move replica data from S2 => S4

Server S4 is structurally independent from other servers
(see Figure[I). The repair engine outputs plans that are guar-
anteed to result in a topology that has the failure probability
lower than 0.05.

3. SUMMARY

In this paper we have presented the basic ideas behind
a framework RepAudit for preventing cascading failures.
RepAudit helps administrators to identify potential root causes
resulting in cascading failures at an early stage, i.e., before
service outages occur. Due to the application of the state-of-
the-art SAT/SMT solvers, RepAudit is capable of achieving
both efficient and accurate structural reliability auditing to
cloud-scale systems.

4. REFERENCES

[1] Correlated Failures within EBS and EC2. https://goo.gl/tFZ9aD.

[2] Prevention is better than cure.|https://goo.gl/jtpzes.

[3] Rackspace Outage Nov 12th. https://goo.gl/oN6KbS,

[4] Mario Alviano, Carmine Dodaro, and Francesco Ricca. A MaxSAT algorithm
using cardinality constraints of bounded size. In 24th IJCAI, July 2015.

[5] Mona Attariyan and Jason Flinn. Automating configuration troubleshooting
with dynamic information flow analysis. In 912 OSDI, October 2010.

[6] Paramvir Bahl, Ranveer Chandra, Albert G. Greenberg, Srikanth Kandula,
David A. Maltz, and Ming Zhang. Towards highly reliable enterprise network
services via inference of multi-level dependencies. In SIGCOMM, 2007.
Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. A scalable
approximate model counter. In /9th CP, 2013.

[8] Dan Greer. Heartbleed as metaphor. Lawfare, April 2014.

https://goo.gl/nno0XV,

[9] Haryadi S. Gunawi, Mingzhe Hao, Tanakorn Leesatapornwongsa, Tiratat
Patana-anake, Thanh Do, Jeffry Adityama, Kurnia J. Eliazar, Agung Laksono,
Jeffrey F. Lukman, Vincentius Martin, and Anang D. Satria. What bugs live in
the cloud? A study of 3000+ issues in cloud systems. In 5th SoCC, 2014.

[10] Haryadi S. Gunawi, Mingzhe Hao, Riza O. Suminto, Agung Laksono, Anang D.
Satria, Jeffry Adityatama, and Kurnia J. Eliazar. Why does the cloud stop
computing? Lessons from hundreds of service outages. In 7th SoCC, 2016.

[11] Joshua B. Leners, Hao Wu, Wei-Lun Hung, Marcos Kawazoe Aguilera, and
Michael Walfish. Detecting failures in distributed systems with the Falcon spy
network. In 23rd SOSP, 2011.

[12] Gordon D. Plotkin, Nikolaj Bjgrner, Nuno P. Lopes, Andrey Rybalchenko, and
George Varghese. Scaling network verification using symmetry and surgery. In
43rd POPL, January 2016.

[13] Patrick Reynolds, Charles Edwin Killian, Janet L. Wiener, Jeffrey C. Mogul,
Mehul A. Shah, and Amin Vahdat. Pip: Detecting the unexpected in distributed
systems. In 3rd NSDI, 2006.

[14] Xin Wu, Daniel Turner, Chao-Chih Chen, David A. Maltz, Xiaowei Yang,
Lihua Yuan, and Ming Zhang. NetPilot: Automating datacenter network failure
mitigation. In SIGCOMM, 2012.

[15] Ennan Zhai, Ruichuan Chen, David Isaac Wolinsky, and Bryan Ford. Heading
off correlated failures through Independence-as-a-service. In 71th OSDI,
October 2014.

[16] Ennan Zhai, David Isaac Wolinsky, Hongda Xiao, Honggiang Liu, Xueyuan Su,
and Bryan Ford. Auditing the Structural Reliability of the Clouds. Technical
Report YALEU/DCS/TR-1479, Department of Computer Science, Yale
University, 2013. Available at
http://cpsc.yale.edu/sites/default/files/files/tr1479.pdf|

[7

https://goo.gl/tFZ9aD
https://goo.gl/jtpzes
https://goo.gl/oN6KbS
https://goo.gl/nnoOXV
http://cpsc.yale.edu/sites/default/files/files/tr1479.pdf

	Background & Motivation
	RepAudit Framework
	Summary
	References

