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ABSTRACT
We propose a VR video conferencing system over named data
networks (NDN). The system is designed to support real-time,
multi-party streaming and playback of 360 degree video on
a web player. A centralized architecture is used, with a sig-
naling server to coordinate multiple participants. To ensure
real-time requirement, a protocol featuring prefetching is
used for producer-consumer communication. Along with the
native support of multicast in NDN, this design is expected
to better support large amount of data streaming between
multiple users.
As a proof of concept, a protoype of the system is imple-

mented with one-way real-time 360 video streaming. Experi-
ments show that seamless streaming and interactive playback
of 360 video can be achieved with low latency. Therefore,
the proposed system has the potential to provide immersive
VR experience for real-time multi-party video conferencing.

CCS CONCEPTS
• Computing methodologies → Virtual reality; • Net-
works→ Naming and addressing; Network experimentation;
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1 INTRODUCTION
AR/VR will grow to become a $100 billion market in 2025
according to a Goldman Sachs forecast. It is predicted that the
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deployment of 5Gwith faster networkswith very short round
trip times will enable the deployment and wide adoption of
AR/VR applications.

However, on its own, 5G may not be sufficient to sup-
port AR/VR applications properly. The peak 5G bandwidth
of 1Gbps and sub-millisecond RTTs could support some
AR/VR applications. Yet, this level of performancemay not be
achieved by most users most of the times. We believe archi-
tectural support will be required to provide most consumers
of AR/VR with the proper QoE.

ICN provides some benefitswhichwill be useful for AR/VR.
In particular, for a VR application, ICN offers native multi-
cast support which allows multiple users to participate in a
virtual or remote environment, multi-point to multi-point
communication semantics, and potentially the sharing of the
common tiles which compose a Field of View. As for AR, the
ability of ICN to cache some content near the users could
store enhancements that augment the reality locally.
To demonstrate the benefits of ICN for AR/VR, we con-

sider here the implementation of such a VR application using
NDN. Namely, we describe the implementation of an immer-
sive 360 video stream over NDN. One potential application
is to enable VR video conferencing, where the remote partic-
ipant feels like he/she is in the room with the other partic-
ipants. VR video conferencing is a challenging application
with strict delay and scalability requirements, which makes
it an interesting first step.
ICN works on a pull-based model i.e. a consumer needs

to send out a request, called Interest, to fetch the desired
content, called Data. Using pull-based model for implement-
ing a real-time audio/video conferencing system, which has
stringent latency requirements1, requires re-engineering the
existing IP-based solutions. Existing work in this regard, like
NDN-RTC [7] work in a peer-to-peer model, hence may face
scaling issues. Our solution follows the design of our previ-
ous work [3] that is based on specialized service edge routers,
that can scale well above 40 participants.
Here, the goal is to check the feasibility of ICN-based ar-

chitecture for VR traffic, not the orchestration of services.
We therefore simplify the network architecture, at the cost
of more configuration at the end-hosts. Our solution uti-
lizes two channels – one for control signals and one for data
communication. The control channel provides mechanisms
1Less than 150ms and 350ms, for audio and video traffic respectively [4].
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to synchronize the consumer and producer state; whereas
the data exchange leverages ICN features, resulting in band-
width efficiency. The proposed conferencing system provides
higher reliability (i.e., faster recovery from the transient net-
work conditions) and better performance with respect to
media name sync among participants.
The paper is organized as follows: in Section 2, we take

a look at the related work. Then we present an overview of
our system in Section 3. We highlight some design details
in Section 4. We evaluated our implementation and provide
some results in Section 5. Finally, Section 6 offers concluding
remarks.

2 RELATEDWORK
There has been some work on video streaming in ICN.
RFC7933 [14] discusses porting current IP video mechanisms
to ICN architectures and considers some of the research
challenges in ICN-specific video streaming mechanisms. [6]
considers some of the issues arising from the interaction of
adaptive video streaming with caching in ICN.
There are fewer works in the literature focusing on real-

time communication using NDN; especially in audio/video
conferencing. Initial work in this regard like VoCCN [8]
and ACT [15] address only real-time audio communication,
but demonstrate how a pull based architecture like NDN
can be used for real-time communication. In [2] NDNVideo
is proposed, which is able to stream live and pre-recorded
video over NDN. The work is further expanded in [13]. These
works do not offer immersive video nor VR experience.

NDN-RTC in [7] provides a peer-to-peer based framework
for real-time audio/video communication using WebRTC [1]
. The proposed NDN-RTC works as a wrapper outside We-
bRTC. On the producer side, it takes the output of WebRTC
and packetizes it in NDN-compatible fashion, and sends it
out via NDN. On the consumer side, NDN-RTC depacke-
tizes the received data and feeds it back to WebRTC. In this
way, NDN-RTC provides a transparent solution for real-time
communication over NDN, which does not require the de-
velopers to interact with low-level NDN details. However,
the application-support features offered by NDN-RTC con-
tinue to rely on heuristic approaches implemented at the end
hosts, such as measuring response time for Interests during
bootstrap phase or during connection disruptions for the
mobile consumers. On the other hand, our solution pushes
many of these features towards the network as in-network
services to reduce the end host complexity, which allows for
better scalability performance.

3 SYSTEM OVERVIEW
Our objective is to design a real-time NDN-based VR video-
conferencing. There are several goals:

Figure 1: Framework of the NDN VR Conferencing System

(1) Support real-time video streaming between producer
and consumer;

(2) Fully compatibility with NDN features, including ap-
plication suitable naming, native multicast support,
etc;

(3) Support seamless VR playback on a wide range of
platforms;

(4) Support multi-party conferencing;
(5) Support rate adaption.
To this end, we propose a framework shown in Figure 1.

The system comprises of three components, the producer,
the consumer, and the sync manager, which are in charge of
video generation, video playback, and signaling, respectively.

At the producer side, we use FFmpeg to capture and encode
video on-the-fly and feed the stream to the buffer, fromwhich
the producer segments, packetizes, and names the data on a
per frame base. Notifications about new chunks are sent out.
It also responds to consumer-sent interests for video chunks
by sending out the corresponding data.
The consumer receives notifications, and decides which

chunks to fetch based on a prefetching protocol2. Interests
for these chunks are sent in subsequence. Meanwhile, the
received data chunks are sorted in correct order according to
their names, and fed to the buffer. The VR player reads from
the buffer, and renders the video in spherical (or equirectan-
gular) mode. It also interacts with the user’s behavior, such
as selecting the Field of View (FoV) and zooming in and out.

The sync manager works as the signaling server. Its main
job is to receive notifications about new video chunks from
the producers and to broadcast them to the subscribing con-
sumers. It is also in charge of user joining/leaving. When
such an event happens, the involved user must send a notifi-
cation to the sync manage, which then notifies other users
so they can properly handle functionalities such as display
window management.

There are several features of the designed system. First,
it works in a centralized manner, in the sense that the sync
manager coordinates all the participants. Compared with
2Prefetching means here that the Interests for the chunks are issued for
chunks not-yet-created, to be delivered at a future time.
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Figure 2: Naming scheme
peer-to-peer solutions such as NDN-RTC, this abstracts a
distinct control plane, over which the management of a con-
ference can be easily implemented. Second, on the data plane,
we adopt a prefetching protocol that allows a consumer to
“reserve” data chunks that are to be generated. In this way, un-
necessary latency is avoided. Third, we adopt a lightweight
VR player that is universally available, and easily substituted
by other players.

4 DESIGN DETAILS
4.1 Namespace
In the proposed VR video conferencing applications, there
are mainly two types of packets, namely, interest and data
for video, in the data plane. In the control plane, there are
notifications for events such as new video blocks, and join-
ing/leaving requests. They are essentially interests with the
message in their names. These interests do not have corre-
sponding data, and no one responds to them. For clarity, we
will refer them as notifications, and refer to interests solely
as the “requests” for data, in the data plane.

We adopt the same naming scheme for video interest and
data as in [9], shown in Fig. 2. In the name, the domain
iser is a network prefix, referring to the "ICN Service Edge
Router" (ISER) that hosts the current conference; domain
conf stands for the instance of conference; user identifies an
individual participator; video and audio denotes the media
type; and block and chunk are indices for the data packet.
In our implementation, a block corresponds to a frame of
the video, which is segmented into small chunks, ordered in
sequence. As an example, suppose the 5th frame of the video
is produced by user 2, who is participating in conference
3 hosted on iser 1, has 3 segments, the 1st segment is then
named as /iser1/conf3/user2/video/block5/chunk1.

4.2 Real-time Communication Protocol
To reduce the latency and enhance real-time experience,
we adopt the prefetching protocol for producer-consumer
communication, in the same way as [3]. The protocol is
illustrated in Fig. 3. Note that, notifications are not sent

Figure 3: Prefetching protocol

directly from producer to consumer, but relayed by the sync
manager. But we omit the sync manager in Fig. 3, since only
the end-to-end communication is the concern.

To be specific, the producer sends out a notification about
the first frame that is generated in a one-second period (frame
0 in the example shown in Fig. 3). Upon receiving the notifi-
cation, the consumer sends out interests for the video chunks
that will be generated in the next second, instead of those
in the current second. For an agreed-on framerate, the block
indices of the frames to be requested can be computed easily.
For the example shown in Fig. 3, we assume that the fram-
erate is 15 fps, i.e., 15 frames are generated in one second.
So the consumer sends out interests for frames 15 to 29 in a
bunch. Although the block indices (each block corresponds
to a frame) is perfectly predictable, the consumer does not
know how many chunks there will be for each frame in ad-
vance. Therefore, it guesses a number based on the expected
frame size, and sends interests based on the guessed number.

When an interest is received by the producer, it first checks
if the requested data has been generated. If so, the corre-
sponding data is sent back to the consumer; if not, the inter-
est is cached, and the corresponding data is sent back once
generated. Since there may be more or less data generated
than the number of interests expressed by the consumer, the
producer announces the real number of chunks at the head
of the first chunk of each frame. In this way, the consumer
can remove redundant interests or send additional interests
accordingly. Since it will result in latency for additional in-
terests, it is generally favorable to allow some redundancy
when guessing the number of chunks.

4.3 Producer
The block diagram of the producer is shown in Figure 4.
The two main parts are the video generator and the data
publisher.
The video generator produces a video stream playable

at the receiver and packetizes it in a NDN-compatible way.
We use a Ricoh Theta S 360 camera [10] as the input device,
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Figure 4: Block Diagram of Producer
which suports 15fps 720p motion-JPEG video output in dual-
fisheye in live mode. The output of the camera is encoded
and muxed using FFmpeg, a powerful multimedia framework
supporting a vast variety of formats.

Compared to traditional video streaming, VR video stream-
ing is expected to generate much larger amount of data, since
it has to cover a wide range of view. Therefore, a good en-
coder should be chosen to encode the raw video. We use
H.264 since it offers high quality with good compression
rate. Besides, there is also a playback requirement that ne-
cessitates this choice (see subsection 4.4 for details).

To be specific, FFmpeg samples raw data from the camera
15 time per second, in accordance with the supported fram-
erate of the camera. Each frame is encoded in H.264 format.
Fragmented MP4 format is needed to support the increamen-
tal buffer and playback at the consumer side. Therefore, the
video is further muxed in MP4 container, with the media
streams fragmented into separated media “atoms” (elements
in MP4 container). We have each frame in a separate atom,
therefore, the output stream of FFmpeg is properly separated
frame by frame.
The stream of encoded and muxed frames are piped to

the stream wrapper, which wraps the frames into NDN-
compatible packets. Since the frame size may exceeds the
maximum allowed value for a NDN packet, it is segmented
into chunks, each with its unique name according to the nam-
ing scheme. The chunks are then cached in a buffer, where
the data publisher is able to retrieve them.

The data publisher handles communicationwith syncman-
ager and consumer. Two functionalities are implemented.
The notification issuer handles notifications. It creates a no-
tification for the first frame generated in every second, and
sends it to the sync manager so that it can be broadcast to the
consumers. The interest handler, on the other hand, keeps
track of the received interests. For interests that correspond
to generated data, the data is retrieved from the buffer and
sent back; for those correspond to data that has not been
generated, the interests are cached until the data is generated.

Audio is processed in the same fashion, except there may
be different input devices, sampling rates, and encoders. Log-
ically, a separate stream can be maintained for audio. How-
ever, Ricoh Theta S 360 camera supports the recording of
audio in parallel with video. Besides, MP4 container sup-
ports musing of multiple streams. Therefore, we are cur-
rently adopting an alternative method, i.e., have both video

Figure 5: Block diagram of the consumer

and audio muxed together in one stream. The major bene-
fit of this approach is the natural synchronization of video
and audio at the encoding and muxing stage. There is also a
possible drawback: the consumer has less flexibility in play-
back mode switching. But this can be easily worked around
by generating a separate audio-only or video-only stream
upon request. The prefetching mechanism implies that the
producer is able to start the requested streams in a timely
manner.

4.4 Consumer
The consumer comprise of two parts, data receiver and VR
player, as shown in Figure 5.
The data receiver interacts with the NDN interface, re-

ceiving notifications from sync manager and conducting
interest-data exchange with the producer. To be specific,
the notification handler decides which data chunks to be
requested according to the prefetching protocol. Note, in
practice, due to network delay, the notifications may not
arrive in time. The notification handler, therefore, checks the
block index in the name of the notification, compare it with
those of the sent interests, and decides if it is outdated. If
so, the notification is simply discarded; if not, interests for
the next second are sent to the producer to fetch the data.
As described in 4.2, a number of chunks is guessed based
on the expected frame size, and the interests are generated
accordingly.
When a data packet is received, the data handler gets

the block and chunk indices from the name and process it
according to them. If it is the first chunk of a frame, the data
handler read the number of chunks from it, since the protocol
rules that the producer include the value at the start. Based
on this value, data handler decides if there are redundant
interests to be removed, or additional interests to be sent.
Moreover, since chunks may arrive in an incorrect sequence,
the data handler may need to cache and sort them in the
correct order. Once all chunks for a frame are received and
sorted, they are cached in the buffer, waiting to be played.
For a VR application, an important issue is the choice of

player. Unlike players for normal video, a VR player must
support VR features such as video stitching, FOV rotation,
zooming and so on. The support of VR varies significantly
for different state-of-art video players, which may hinder
the usability of the proposed application. A lightweight,
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universally-available player that supports VR stream is there-
fore a preferable choice. For this we choose a web-based
solution.
Ever since HTML5 has been introduced, it has become

a popular solution for cross-platform multimedia playback.
And since a HTML5-based web application can be easily
ported to a hybrid mobile app using frameworks such as
Apache Cordova, it has the further potential of covering
mobile platforms. Consequently, a HTML5-based player is
a good choice to meet our needs. In fact, there are already
some open source HTML5-based 360 video players, such
as Google’s vrView [5] and a preliminary player offered by
Ricoh [11], although neither of them supports streaming
from a NDN source.

We develop our player based on the latter. The backbone
of the player is a JavaScript. It handles the stitching of du-
alfisheye video to spherical video, the interaction with user
behavior, and the playback control of the video element in
the HTML page.
The main obstacle that hinders a HTML5-based player

from supporting NDN-streaming is that the media fetching
is done by the browser running the web application, and the
way it fetches media is hidden. Therefore, even if the data
receiver has fetched the video chunks to a local buffer, it is
still not straightforward to make the player working with it.

To enable the player to stream from the buffer, we employ
media source extension (MSE) [12] of HTML5. This exten-
sion allows javascript to generate media streams for a HTML
media element, based on sequentially fetched data. There-
fore, we implement in the player a data fetching agent that
can communicate with the buffer, requesting newly added
chunks from it. This is done using Asynchronous Javascript
and XML (AJAX) requests and responses, for the following
reasons: 1) because of the fluctuations in arrival times at the
data receiver, and the processing time at the MSE, of different
frames, the data fetching process of MSE is naturally an asyn-
chronous process; 2) there is no native way for javascript to
fetch data from another process, or rather, the native way for
JavaScript to communicate with other processes is through
AJAX; 3) although it is possible for JavaScript to read from
local files, it is expected to be slower than to read from a
buffer.

Therefore, we design a playback server to work alongside
the web player. It responds to AJAX requests sent from the
player with the corresponding video chunks retrieved from
the buffer. Since the player is not aware of newly arrived
video chunks, the playback server also handles notifications.
This is achieved by implementing an event channel at the
server, which pushes an event to the player once a new chunk
arrives. The player uses server-sent-event (SSE) API to sub-
scribe to this channel and get updates about new chunks.

Figure 6: Rendered output at the consumer, with different
viewing angles

Figure 7: Generated video at the producer

AJAX requests are made once a new event is received. In-
terestingly, the interaction between the playback server and
the web player, i.e., notification-interest-data iteration, re-
sembles how the consumer interacts with sync manager and
producer. This implies that, the NDN-related functionalities
are hidden behind the playback server, from the player’s
point of view. Therefore, the proposed application can be
easily migrated to other VR players.

5 IMPLEMENTATION AND EVALUATION
We implement a prototype of the proposed NDN VR video
conferencing system. A producer and a consumer are hosted
on two different computers running Ubuntu 16.04 operating
system. The computer hosting the producer also runs the
sync manager. In our preliminary testbed, the two comput-
ers are connected with an Ethernet cable, and Named Data
Networking Forwarding Daemon (NFD) are run on both of
them to emulate NDN forwarding. The NDN functionalities
are achieved by using jndn library.

On the producer side, a Ricoh Theta S 360 camera is used
to capture 360 video; on the consumer side, the VR player
is run within the Mozilla Firefox browser. The generated
video at the producer, and the rendered output at the con-
sumer are shown in Fig. 7 and 6. Notice that the dualfisheye
video is stitched to sperical at the VR player. The application
successfully display the live video in real time. The latency
between the generation of a video chunk at the producer
and its reception at the consumer is shown in Figure 8. The
data is collected from a test lasting 30 minutes, which also
demonstrates the stability of our system for such length of
time. The chunks are indexed according to the sequence with
which they are generated. It is clear that, the latency for the
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Figure 8: The latency from generation and delivery of video
chunks

Figure 9: The cumulative distribution function (CDF) of la-
tency for the video chunks

chunks is quite steady and remain under 120 ms for most of
them.
To better show the performance in terms of latency, we

plot the CDF of latency in Fig. 9. It can be observed that
more than 90% of the chunks are delivered within 60 ms
in our testbed. Expanding the network size would only add
NDN networking delay, and would stay below our 350 ms
target. All the results suggest that the proposed system has
the potential to support real-time, multi-party VR video con-
ferencing.

6 CONCLUSION AND FUTUREWORK
We have proposed a VR video conferencing system built
atop NDN. The system is comprised of three components,
namely, the producer, the consumer, and the sync manager.
A centralized signaling structure is used, allowing the proper
synchronization of the different users. To ensure the real
time requirement is met, a prefetching approach is adopted,
in which the consumers request video chunks in advance.
For the playback of VR video stream, we designed a web
player that is universally available. It is able to stitch the
dualfisheye video to equirectangular format, and interact
with user actions such as view angle rotation.Workingwith a

consumer-side playback server, it has the potential to provide
VR experience for a user on a browser.

We have implemented a prototype of the application, which
currently supports one-way real-time live streaming of VR
video. The latency has been verified to be small and con-
sistent. In the future, we will add functionalities such as
multi-user support, more intense VR experience, and head-
mounted display using the Google Daydream framework.
This application provides a good example of the potential of
VR applications enhanced by ICN.
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