
© 2009 Nokia 1

DS-Lite:
Implementation experience and
views

CMCC workshop, Nov 2009

B. Patil/T. Savolainen/F. Junior

© 2009 Nokia 2

Overview of DS-Lite

© 2009 Nokia 3

Need for IPv4-over-IPv6 tunneling
• Earlier, tunneling discussions focused on IPv6-over-IPv4:

“How to reach IPv6 domain from IPv4-only networks?”

• However, due to the looming IPv4 address exhaustion, the bigger question now
is:

“How to reach IPv4 domains from IPv6-only networks”?

• There are various methods, and one such is Dual-Stack Lite

• DS-Lite looks like Dual-Stack for devices/applications, but in reality it:

Automatically tunnels IPv4 over IPv6 to
Address Family Transition Router (AFTR)

AFTR aka Carrier Grade NAT aka Large Scale NAT aka DS-Lite tunnel concentratorAFTR aka Carrier Grade NAT aka Large Scale NAT aka DS-Lite tunnel concentrator

© 2009 Nokia 4

DS-Lite provides
• IPv4 connectivity to hosts and/or home routers (CPEs) that are provisioned with only IPv6

addresses
• No need for private addresses in operator’s network
• Public IPv4 addresses, previously used in operators’ intra, are harvested into more productive

use
• Dual-Stack connectivity for hosts connected to IPv6-only access networks

• Less need to maintain IPv4 or dual-stack access networks
• A lightweight solution for providing IPv4 connectivity over IPv6 only access

• Single NAT – i.e. no need to have multiple layers of NATs
• Avoidance of protocol translation – and problems caused by it
• Multiplexing limited number of public IPv4 addresses for even larger number of customers

than before
• Automatic tunnel establishment

• Tunnel endpoint (AFTR) is discovered with Stateless DHCPv6 (new option defined)
• Port forwarding capability on the AFTR

• With technologies such as: Web-UI, NAT-PMP, UPnP, A+P
• In 3GPP, would enable IPv4 connectivity over IPv6-only PDP context

• Handy, if number of simultaneously open PDP contexts must be limited

© 2009 Nokia 5

DS-Lite costs

• Supporting host and/or CPE and/or other node must be updated
• Encapsulation effort, especially on the network side (large number of tunnels)
• MTU issues due to encapsulation (possibly causing fragmentation/reassembly)
• Legal requirements: Carrier Grade NAT (AFTR) has to store the binding it makes

for legal traceability
• Challenges in deep packet inspection, e.g. for QoS purposes (differentiating

tunneled traffic to dedicated bearers)
• Short NAT timeouts, - possibly only 3 minutes for idle TCP sessions!

• However, latest draft revision states behave RFCs SHOULD be followed

• Big-and-Rather-Expensive-Piece-of-Hardware for AFTRs
• Application Layer Gateway functionality centralized in AFTR

© 2009 Nokia 6

DS-Lite standard architecture models
• Router (CPE) based architecture

• The home CPE, also called B4 (Basic Bridging BroadBand
Element) advertises RFC1918 addresses to LAN, and tunnels
IPv4 packets over IPv6 to AFTR for NATting

=> Home users do not see much difference whether NAT is at
CPE, or at AFTR

• Each home network can use the full RFC1918 space

• Host based architecture
• A host, like mobile phone, configures virtual IPv4 interface

with RFC1918 address (or a dedicated IANA assigned
address from subnet 192.0.0.0/29), and tunnels IPv4 over
IPv6 to AFTR for NATting

• AFTR can be implemented e.g. in GGSN, PDN-GW, or as
separate network entity

B4 is
pronounced as

“Before”

B4 is
pronounced as

“Before”

© 2009 Nokia 7

Illustration of DS-Lite architectural models

IPv6
Intranet

IPv6
Intranet

IPv6
Internet

IPv6
Internet

v4v6
DS LAN

v4v6
DS LAN

v4-only
LAN

v4-only
LAN

192.168.0.1

192.168.0.1

192.168.0.1

Illustrative mappings on AFTR:
Internal External

_
(2002:1::1 * 192.168.0.1:3001) 192.0.2.1:5001
(2002:2::2 * 192.168.0.1:3001) 192.0.2.1:5002
(2002:3::3 * 192.168.0.1:3001) 192.0.2.1:5003

IPv6 address
learned with
DHCPv6

192.0.2.1

2002:3::3

Updated B4 enabled device connected
directly to intranet, or e.g. with IPv6
PDP context to PDN GW

AFTR
(can be e.g. in PDN
GW, or separate)

N
A

T(
)

Legacy IPv4
device

Outer IPv6 packet source addr: 2002:1::1
Outer IPv6 packet dest addr: AFTR’s IPv6 addr
Inner IPv4 packet source addr: 192.168.0.1
Inner IPv4 packet dest addr: peer’s IPv4 addr

IPv4
Internet

IPv4
Internet

point-to-point IPv4
over IPv6 tunnel

2002:2::2

Tunneling B4

Tunneling B4
Basic IPv4 + IPv6
device

2002:1::1

co
nc

en
tra

to
r

© 2009 Nokia 8

Implementation on Maemo

© 2009 Nokia 9

Technical solution done for N810

• Current DS-Lite implementation is based on the host model architecture for client
side implementation

• However, it is possible to adapt the solution for CPE model architecture

• Linux MAEMO platform
• Customized Debian Linux distribution for mobile devices
• Binaries are cross-compiled for ARM platform

• N810 WiMAX Edition terminals as test platform
• MAEMO version 4.1.2 (DIABLO release), based on

Linux kernel version 2.6.21

© 2009 Nokia 10

Technical solution done for N810
• DS-Lite client specification requires IPv4-over-IPv6 tunneling capabilities

• Linux has native support for such feature since version 2.6.22, using a virtual device
driver concept (ip6_tunnel)

• iproute2 package (set of tools for configuring the Linux network) is also required for
configuring the Linux tunnels on MAEMO

• ip6_tunnel intercepts IPv4/IPv6 packets on their path by kernel network stack:
• On transmission, encapsulating IPv4 packets into IPv6 packets, according to specific

user settings (tunnel parameters)
• On reception, extracting the IPv4 packets from IPv6 packets, and delivering them to

IPv4 network stack

• Linux kernel version 2.6.21 and above already support the dual-stack operation
(IPv4/IPv6), necessary for IPv4-over-IPv6 tunneling

• However, ip6_tunnel device driver supporting IPv4-in-IPv6 tunneling is just available
from kernel version 2.6.22 and beyond

© 2009 Nokia 11

IPv4 Header
IPv4 Payload

Technical solution done for N810
Transmission

physical interface

IPv4 Layer

2 1

TCP/UDP/ICMP

IPv6 Layer

3

IPv6 Routing
Table

dslite interface

6

5

physical interface

IPv6 Layer

1

dslite interface

3

IPv4 Layer

4

TCP/UDP/ICMP

6

IPv4 Routing
Table

IPv6 Routing
Table

4

2

IPv4 Routing
Table

5

Reception

IPv6 Header
IPv4 Header
IPv4 Payload

IPv6 Header
IPv4 Header
IPv4 Payload

IPv4 Header
IPv4 Payload

IPv4 layer looks up
its routing table,
searching for the
device associated to
IPv4 destination
address.

The DS-Lite device is
returned, as the
routing table entry is
configured for
diverting all locally-
generated IPv4 traffic
to the DS-Lite
interface.

DS-Lite device driver
looks up on the IPv6
routing table,
searching for a
device associated
with the tunnel
remote endpoint
address.

DS-Lite device driver
creates a new IPv6
datagram,
encapsulating IPv4
datagram into the
payload, and delivers
it to the IPv6 stack
for transmission.

“Next Header” IPv6
header field is filled
with “IPIP” value.

IPv6 layer looks up
its routing table,
searching for the
device associated to
IPv6 destination
address. The packet
is delivered locally,
since the destination
address of incoming
IPv6 datagram
matches the IPv6
address of IPv6 local
interface.

The incoming IPv6
datagram is delivered
to the associated
protocol handler,
according to the
value of IPv6 header
field “Next Header”.

On its initialization,
the DS-Lite device
driver has registered
itself as the protocol
handler for “IPIP”
protocol.

DS-Lite device driver
extracts the IPv4
datagram, and
delivers it to the IPv4
stack.

The IPv4 datagram is
delivered exactly as if
it would have arrived
from the IPv4
physical interface.

The IPv4 layer looks
up its routing table
searching for the
device associated to
IPv4 destination
address.

The packet is
delivered locally,
since the destination
address of the
incoming IPv4
datagram matches
the IPv4 address of
DS-Lite local
interface.

© 2009 Nokia 12

Installation and tunnel setup automation
solutions
• Documentation was created on how to proceed with installation on MAEMO

• Under review, to be released together with binaries in the next weeks

• Requirements for the MAEMO 4.1.2 device
• Root access enabled (rootsh 1.4 (gainroot))
• IPv6 support enabled
• BusyBox (busybox_1.6.1.legal1osso15ipv6.1_armel.deb)
• Iproute2 (iproute_20080725-maemo412.1_armel.deb)
• ISC DHCPv6 client (dhcp-4.1.0p1.tar.gz)
• Bash2 (bash2 2.05b-1maemo3)

• A DS-Lite AFTR (CGN) must be available at the IPv6 network

• Current release expects automatic configuration of the AFTR tunnel endpoint using
specific DHCPv6 options (http://tools.ietf.org/html/draft-dhankins-softwire-tunnel-option);
therefore, a DHCPv6 server providing the address of the AFTR tunnel endpoint must be
provided (we used ISC’s DHCPv6 server)

http://tools.ietf.org/html/draft-dhankins-softwire-tunnel-option

© 2009 Nokia 13

Installation and tunnel setup automation
solutions
• Installation of the DS-Lite support itself is

quite automatic
• Need to install manually the Debian

package (provided by INdT), by typing the
command below on X Terminal:
dpkg -i dslite_20090630-maemo412.1_armel.deb

• During the installation process, the user is
requested to type the IPv4 address/prefix
for DS-Lite interface

• Once defined by newer versions of the
DS-Lite I-D, this step will be no longer
required (current assumption is that
192.0.0.0/29 range is allocated, so the IP
for client could be e.g. 192.0.0.2, as the
192.0.0.1 is reserved for the AFTR
element)

• After that, the DS-Lite support is available
the next time the device connects to an
IPv6-only Wi-Fi connection

© 2009 Nokia 14

AFTR solutions available

• Two sources for the AFTR node:
1.A10 Networks has an AFTR product – This requires a licence and runs on an

A10 networks platform
2.Open source implementation from ISC – Was publicly announced at IETF75

• Initial testing was done with the A10 networks’ AFTR located in the Comcast lab*

*Thanks to Alain Durand and Yiu Lee

© 2009 Nokia 15

Experiences on implementation and testing
• Back-porting ip6_tunnel from 2.6.22 to 2.6.21 was required in order to provide DS-Lite

client capabilities for MAEMO
• Functions inside the ip6_tunnel 2.6.22 code not supported by DIABLO release were replaced by

semantically equivalent code (e.g. ip_hdr, ip6_hdr, skb_reset_network_header, mac_header,
transport_header and network_header)

• Bug-fix of tunnel6 code on DIABLO kernel: IPv4 tunneled packets with overall size (header size
+ payload size) lesser than the size of the IPv6 header (40 bytes) were dropped

• Used the GPL toolkit scratchbox (sponsored by NOKIA) for cross-Compiling the resulting code
(ip6_tunnel and tunnel6) for the ARM architecture

• The pre-installed MAEMO Diablo release of iproute2 version doesn’t support IPv4-in-IPv6
tunnels

• We needed to update this package in order to allow the setup of IPv4-in-IPv6 tunnels on Nokia
N810 tablet

• iproute2 source code was downloaded (version 2.6.26) from its web site, and it was also cross-
compiled using scratchbox toolkit

© 2009 Nokia 16

Experiences on implementation and testing
• We were able to run legacy applications (i.e. not aware of DS-Lite) like Web browsing and

Skype without any problems

• IPv6 tunnel connectivity was through tunnel broker (Hurricane.net)

© 2009 Nokia 17

Experiences on implementation and testing
• As can be observed, the test scenario was not necessarily compliant with the

deployment model
• However, we were able to test the implementation for ICMP, TCP and UDP protocols

• Issue arose for packets larger than the IPv6 tunnel with Hurricane.net’s MTU of
1280 bytes, as we end up with black-hole TCP connections, and UDP drops

• We adjusted the MTU on the interfaces accordingly, in order to avoid
fragmentation for TCP connections

• Needed to update IPv4-over-IPv6 tunnel implementation on ip6_tunnel.c in order to
allow MTUs smaller than 1280 bytes (due to tunnel broker overhead)

• We can avoid such hacks by avoiding IPv4 fragmentation, and implementing IPv6
fragmentation on the IPv6 tunnel endpoints between the device and the AFTR

• Hack is only possible for host-model, as for the CPE-model the CPE must be
prepared to handle MTUs up to 1500 bytes

© 2009 Nokia 18

Experiences on implementation and testing

• Compilation of ISC AFTR itself was fairly easy
• Tarball file containing source code for installation

• Problems arose during ISC AFTR setup phase
• Lack of documentation for the released version
• Sample configurations were not clear, sometimes confusing
• Tricky automatic tunnel setup available after updating the Access Control Lists for the

specific networks (only informed after e-mail communication with the creators)

• ISC AFTR stability issues
• After some period of activity, the AFTR process stops responding to the client tunnel

messages; terminal commands to the AFTR get an “ALIVE” response, but there is no
further actions to incoming packets from the client tunnel, so we need to restart the
AFTR process again

© 2009 Nokia 19

Feedback received on demo @ IETF#75
• The two DS-lite profiles (home and CPE) were made available for test during IETF #75

• CPE profile was available through a specific IETF’s IPv6-only Wi-Fi network
• Host profile was available on some N810 terminals used by Nokia people

• Several N810s with DS-Lite implementations operated on the IETF's IPv6-network without
any problems

• Host profile on N810 demonstrated during IETF #75

DS-Lite implementation open sourced

• The DS-Lite implementation for Maemo has been open sourced recently

• Details are at:
• http://ds-lite.garage.maemo.org/

© 2009 Nokia 20

http://ds-lite.garage.maemo.org/

Summary

• DS-Lite client implementation on Maemo is fairly straightforward

• Creates a new virtual interface which captures and tunnels IPv4 packets when
attached via an IPv6 only access

• Implementation has been tested with AFTRs from A10 Networks and ISC
• Demonstrated at IETF75

• DS-Lite implementation for the N810 is now open sourced

© 2009 Nokia 21

© 2009 Nokia 22

	DS-Lite: ��Implementation experience and views
	Overview of DS-Lite
	Need for IPv4-over-IPv6 tunneling
	DS-Lite provides
	DS-Lite costs
	DS-Lite standard architecture models
	Illustration of DS-Lite architectural models
	Implementation on Maemo
	Technical solution done for N810
	Technical solution done for N810
	Technical solution done for N810
	Installation and tunnel setup automation solutions
	Installation and tunnel setup automation solutions
	AFTR solutions available
	Experiences on implementation and testing
	Experiences on implementation and testing
	Experiences on implementation and testing
	Experiences on implementation and testing
	Feedback received on demo @ IETF#75
	DS-Lite implementation open sourced
	Summary

