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1 Internet Protocol Version 6

1.1 Introduction to IPv6

At the time when the Internet was created, nobody predicted that it would become the de facto

medium for business transactions, communication, shopping, and entertainment. The original

ARPANET and NSFNET networks were created to facilitate communication between military

personnel and educational institutions. The IPv4 protocol, specified in RFC 791, was standardized

in 1981, and provided 32 bits of address space. As corporations and home users rapidly jumped

on the “information superhighway,” it was clear that this implementation was not going to work.

Within time, CIDR and NAT were developed to more efficiently utilize the IPv4 address space, but

these were only short-term workarounds, not solutions. Additionally, with over 26% of the IPv4

allocations belonging to the United States, the world is definitely in need of a new protocol.

The IPv6 protocol, first standardized in RFC 1883 (now obsoleted by RFC 2460) and written

in 1995, brings 128 bits of address space to the Internet, in addition to built-in multicast routing

capabilities and privacy extensions. IPv6 headers are of a fixed length, with flexible extension

headers replacing the need for variable header fields that were present in IPv4. Neighbor discovery

and ICMPv6 replace ARP, IGMP, and router discovery, making it easier to locate and communicate

with hosts sharing the same link.

1.2 Deployment and Transitioning Issues

Even though there are numerous benefits of this new protocol, many organizations and countries

have been reluctant to put forth a serious effort and begin the migration from IPv4. Since IPv6 was

slow in development, many “hacks” and additional features were added to IPv4, such as CIDR and

NAT, to more optimize the use of the slowly decreasing address space. Due to these advancements
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in IPv4, the imminent address shortage has been temporarily averted, and more organizations have

time to procrastinate about moving to IPv6.

Although the IPv6 protocol has been standardized in RFC 2460, DNS records are still in

somewhat of a flux. Since the current DNS was not capable of handling 128-bit addresses, new

records, AAAA and A6 were developed to solve this problem. An AAAA record is similar to an

IPv4 A (address) record, but handles four times the bytes. A6 and DNAME records, specified

in RFC 2874, on the other hand, are an alternate replacement for IPv4’s A records, but facilitate

network prefix renumbering, assuming the change of ISP or similar. Instead of an A6 record holding

a complete IPv6 address for a host, it only contains the 64-bit (can be variable) interface identifier

of the host. Queries must follow the chain of A6 records from the hosts domain name to the

TLA ID. A number of prominent authors such as D.J. Bernstein, creator of djbdns, have spoken

out against this method, due to its plethora of lookups and possibility of loops. The IETF has

supposedly reconsidered their decision to implement this system with A6 and DNAME records.

Reverse DNS for IPv6 has been a rocky ride as well, due to the (still) competing methods

for solving the 32 to 128-bit transition. The IP6.INT domain was created and delegated to the

6bone and production IPv6 Internet. This method works similarly to how IPv4 reverse-lookups are

made, reversing the order of the nibbles and appending IP6.INT at the end. However, IP6.ARPA

was created in RFC 3152 and bitstring labels were introduced along side A6 and DNAME. The

following examples show how each of the potential queries would look for the IPv6 address of

2001:470:1f00:181::1.

IP6.INT method:

1.0.0.0.[snip].1.8.1.0.0.0.f.1.0.7.4.0.1.0.0.2.ip6.int. IN PTR

IP6.ARPA method:

1.0.0.0.[snip].1.8.1.0.0.0.f.1.0.7.4.0.1.0.0.2.ip6.arpa. IN PTR

IP6.ARPA with bitstring labels:
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\[x200104701F0001810000000000000001/128].ip6.arpa. IN PTR

It is not clear at this point whether IP6.ARPA or IP6.INT will end up becoming the standard.

A number of systems were developed and provided to provide for the major transitioning hurdle

from IPv4 to IPv6. Most of these techniques use IPv6-in-IPv4 tunnels (IP protocol 41) to allow IPv4

hosts to connect to the 6bone or production IPv6 Internet. 6to4, a method that is primarily intended

for single hosts, uses the 2002::/16 IANA-assigned prefix and the hexadecimal representation of

the IPv4 address to create a globally scoped IPv6 address. For example, an IPv4 address of

128.113.151.16 would become 2002:8071:9710:: with a prefix length of 48 bits. This IPv4 host

then communicates with a public 6to4 relay using the IPv4 anycast address of 192.88.99.1, which

is advertised via BGP from multiple locations. 6to4 does allow for routing multiple hosts on a

LAN through a router running a 6to4 virtual interface, but this does not seem to be very popular,

considering that latencies to 6to4 relays may be less than adequate. Another method, involving

tunnel brokers, allows a user to setup an IPv6-in-IPv4 tunnel to an ISP which provides an endpoint

and some IPv6 address space. The address space given to the user can be assigned to a LAN and

be globally routable, potentially with its own reverse-DNS delegation. Hosts on these LANs may

use stateless autoconfiguration, a method used to automatically assign IPv6 addresses in a quick

and simple manner. This, as well as stateful autoconfiguration, is discussed in greater detail in the

next section.

Regardless of the rampant deployment issues, most modern operating systems and router soft-

ware now fully support the IPv6 protocol. Router manufacturers such as Cisco Systems, Juniper

Networks, Foundry Networks and Extreme Networks and operating systems such as Microsoft Win-

dows XP, Linux, Unix, and Macintosh OS X all completely support the protocol as well as stateless

autoconfiguration. For home users running Windows XP, a command as simple as “ipv6 install”

from the command line will install the IPv6 stack, bring up a virtual interface, and obtain a 6to4
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address for immediate use.

2 IPv6 Autoconfiguration

2.1 Introduction to IPv6 Autoconfiguration

Since IPv6 has been developed to completely replace IPv4 for every host on the planet, is follows

that there be a method for hosts to obtain IPv6 addresses automatically. At this point, IPv4

addresses can be autoconfigured using DHCP, which is a stateful method and uses the client/server

model. However, IPv6 addresses can be autoconfigured using both stateless and stateful (DHCPv6)

systems, often simultaneously.

While stateless IPv6 autoconfiguration has been quite popular on dual-stacked hosts, it is

rather limited, and was arguably a “temporary” solution while DHCPv6 was being developed.

Since stateless autoconfiguration is prevalent in IPv6 LANs today, DHCPv6 is capable of providing

extended parameters and values for hosts that have already received a IPv6 address through other

means. The next two sections will detail the two protocols available for assigning IPv6 addresses.

2.2 Stateless Autoconfiguration

IPv6 stateless autoconfiguration (documented in RFC 2462) is a fairly simple protocol, but not

a very complete one. Most of the work is actually done by the end host that wishes to obtain an

IPv6 address on the network. A host appears on the network, creates an interface identifier, then

obtains a network prefix that is prepended to the interface identifier. Using the link-local address

of the router, the host has instant IPv6 connectivity. Most of the communication in stateless

autoconfiguration uses the ICMPv6 protocol, which has been greatly enhanced for these functions,

compared to ICMPv4.
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The first task in stateless autoconfiguration is for the host to create a unique interface identifier

to be used for any link-local, site-local, or global addresses. This interface identifier, called EUI-64,

is 64 bits that are adapted from the device’s layer two address, typically MAC-48 in LANs. The

IEEE dictates that the conversion from MAC-48 to EUI-64 be carried out by inserting a value of

0xfffe after the first 24 bits of the MAC address. Assuming 0xX (the company ID) and 0xY are

hexadecimal values of the original MAC-48 address, the EUI-64 identifier would be computed as

XX-XX-XX-FF-FE-YY-YY-YY. Most systems would then insert a binary one at bit seven (counting

from the right) to indicate a global scope. The following example illustrates this.

MAC-48: 00:01:03:69:8B:CF

EUI-64: 0201:03ff:fe69:8bcf

Using a MAC-48 layer two address is only one example of computing an interface identifier. A

EUI-64 identifier can be created for layer two addresses up to 118 bits, and for addresses larger

than that, autoconfiguration fails.

The interface identifier is then appended to the prefix fe80::/10, which is reserved for link-

local addresses. Before this, or any other unicast address, can be assigned, the end host must

perform duplicate address detection, or DAD, to ensure the address is unique to the link. The host

then joins the all-nodes and solicited-node multicast addresses using the tentative address. With

neighbor solicitation and advertisement messages, the host can determine if the address is unique

to the link. The following tcpdump output illustrates a case where DAD finds an address conflict

(ff02::1 is the all-nodes multicast address).

15:02:53.862965 :: > ff02::1:ff1c:bb3a: icmp6: neighbor sol: who has

3ffe:b80:d6e:2:250:56ff:fe1c:bb3a

15:02:53.863213 3ffe:b80:d6e:2:250:56ff:fe1c:bb3a > ff02::1: icmp6:

neighbor adv: tgt is 3ffe:b80:d6e:2:250:56ff:fe1c:bb3a

If no neighbor advertisements are received, the host assumes the address is unique. DAD is required

to be used on all new unicast addresses not derived from the same interface identifier. Additionally,

7



DAD can be disabled (DupAddrDetectTransmits ¡= 1) via the operating system, since some ad-

ministrators believe it generates unneeded overhead, and MAC-48 addresses should be unique. In

this situation, an address conflict could possibly be undetected, and communication between hosts

might mysteriously fail. If not using DAD, a prudent administrator should create a registration

system to check MAC-48 addresses before they are allowed on the network.

Once the host has build a unique interface identifier (and a link-local address), the host then

uses the link-local address to send a router solicitation to ff02::2, the all-routers multicast address.

The router sends a router advertisement to the all-nodes multicast address with a network prefix,

preferred and valid lifetimes, and a MTU for the link. The preferred lifetime is the time until the

address is deprecated in favor of a new preferred address. This is most often used in conjunction

with IPv6 privacy extensions, covered later in this section. The prefix is prepended to the interface

identifier and a new, often globally routable, IPv6 address is added to the interface. Since the

interface identifier is the same used in the link-local address, DAD is not performed.

Stateless autoconfiguration is available on many devices today, including most Unix systems,

routers, and Windows-based machines. Additionally, software such as Radvd (router advertisement

daemon) and the Zebra/Quagga software routing suites can provide router advertisements for a

link.

One may note that stateless autoconfiguration does not provide the many common options that

DHCPv4 (or DHCPv6) provides, such as DNS/NTP servers or a domain/host name to be used by

the client. For this reason, stateless autoconfiguration is popular for dual-stack hosts where there

is already an IPv4 network, and stateful IPv4 autoconfiguration has been performed.

Even though stateless autoconfiguration is quite simple, it is not without security issues. There

is no authorization to obtain an address on the network, and this has supposedly been addressed

in RFC 2402, which states that neighbor discovery packets can be authenticated. If DAD is not
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used, the host can silently become a part of the network, without one packet being transferred.

This is possible, although unlikely, because many routers send out router advertisements on a

periodic interval, regardless of whether a router solicitation is received. A DoS with DAD is always

a possibility, if neighbors respond to a neighbor solicitation indicating a duplicate address, even

though no such conflict exists. The victim’s operating system will, in some cases, invalidate what

it believes to be a duplicate address, and the host will lose connectivity. However, this is not a

particularly new problem, since certain ARP spoofing techniques can achieve the same goal with

IPv4.

According to Microsoft, since interface identifiers do not change when a mobile host moves

between subnets on a network, privacy can be an issue for anyone snooping network traffic. RFC

3041 was developed, which details privacy extensions for use with stateless autoconfiguration. In

addition to the IPv6 address generated via the interface identifier, a new IPv6 address with a

“scrambled” interface identifier is suggested, using MD5 hashing. Using a 64-bit history value,

which can be held in stable storage or generated at random, the MD5 hash is computer for the

history value plus the interface identifier. Taking the leftmost 64 bits of the hash and setting bit

six to zero creates the anonymous address. Since the interface identifier is new, DAD is used. This

anonymous address is changed frequently, depending on usage.

Using privacy extensions helps solve the privacy problem with constant interface identifiers, but

can make it more difficult to diagnose network problems. When a host’s IPv6 address changes

randomly, it is almost impossible to troubleshoot the network when there are no set addresses for

outgoing connections from hosts. Additionally, some Internet services will refuse access to hosts

without PTR records, which anonymous addresses will end up lacking.
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2.3 Stateful Autoconfiguration (DHCPv6)

Due to the various limitations of stateless autoconfiguration, a new DHCP standard was pro-

duced to work with IPv6. The DHCPv6 RFC, submitted in July of 2003, proposes an (almost)

entire rewrite of DHCPv4, complete with authentication and interoperability with stateless auto-

configuration. DHCPv6 is called “stateful” since there is bidirectional and (somewhat) reliable

communication between the client and server.

As is similar in DHCPv4, DHCPv6 also uses UDP messages to communicate with clients

and servers, claiming ports 546 and 547, respectively. Clients, instead of broadcasting, commu-

nicate with the DHCPv6 servers via reserved multicast addresses. ff02:1:2 is the link scoped

address for All DHCP Relay Agents and Servers and ff05::1:3 is the site scoped address for

All DHCP Servers. This assumes each client has a working link-local address and has performed

some address collision detection, usually DAD, prior to communicating with the DHCPv6 server.

In DHCPv4, clients are uniquely identified by their MAC address, a DHCP client identifier, or

some other means. In certain environments DHCPv4 servers may randomly generate addresses for

clients, not saving any identifiers. However, DHCPv6 is more stringent about such client identifiers.

A DHCPv6 unique identifier (DUID) is required on the client side when negotiating options and

addresses from a DHCPv6 server, and is passed to the server as a variable-length option. Being

smaller than 128 octets, a DUID can be generated using a combination of the link-local address

and a timestamp, a vendor-assigned unique ID based on some enterprise number, or solely from

the link-local address if the client lacks stable storage.

DHCPv6 is capable of being used under two circumstances, with or without stateless autocon-

figuration. If stateless autoconfiguration is already used on the link, a DHCPv6 client can be used

to just obtain DHCPv6 options only, such as DNS and NTP servers. If DHCPv6 is used to obtain

options, addresses, and routes, the process becomes slightly more complex, and uses link-local and

10



well-known multicast addresses to communicate with the DHCPv6 servers.

All DHCPv6 messages are required to be either multicast or unicast. Clients send messages to

All DHCP Relay Agents and Servers and then can communicate to a specific server using unicast

or continue using multicast. As in DHCPv4, the burden of retransmission is put on the client. To

alleviate a possible denial of service of the DHCPv6 server in the case of a power failure where a

large amount of hosts are powered up at the same time, messages from the client are delayed by

a random time before being sent. All client and server messages use the same format, an 8-bit

message type with a 24-bit transaction ID and a variable length of options. The transaction ID

is used to synchronize server responses to client messages, and must be fairly unique to minimize

security issues.

If DHCPv6 is to be used beside stateless autoconfiguration, only two messages (assuming a

lossless link) are required. The messages originating from the client must use the link-local address

instead of any other address obtained previously from stateless autoconfiguration. The client then

sends an information request with its DUID to All DHCP Relay Agents and Servers and gets a

reply with the DHCPv6 options.

In the case where a client needs an address in addition to DHCPv6 options, four messages

are required. A solicit message is sent to All DHCP Relay Agents and Servers initially, and a

DHCPv6 server should respond with an advertise message. Choosing a server, the client proceeds

to send a request message, complete with a DUID and IA identifier, and the server replies with

an IA (identity-association) and options. An IA contains IPv6 addresses for the client, and can

be applied to exactly one interface. The client’s IAID is required to be consistent across DHCPv6

client restarts.
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2.4 Design Considerations

When deploying IPv6 in an organization, a number of decisions about autoconfiguration must

be made. Some factors that could potentially influence the decision include the amount of machines,

heterogeneity of operating systems, and frequency of mobility. In general, organizations will either

opt to use DHCPv6, stateless autoconfiguration, or a combination of the two.

For most organizations that already provide IPv4 connectivity and autoconfiguration for their

hosts, stateless autoconfiguration is most likely the best choice. Almost all modern operating

systems with an IPv6 stack support stateless autoconfiguration, and the required configuration is

usually minimal, if it exists at all. However, since stateless autoconfiguration is required to use a

/64 or larger prefix, this can be quite wasteful or impossible for organizations with a small number

of hosts per subnet or ones that have been only delegated a /64 by their ISP. However, such a waste

of abundant resources in networking is quite common, since the scarce resources are optimized.

If an organization wishes to only use IPv6 connectivity, DHCPv6 starts to look like a better

choice, due to the limits of stateless autoconfiguration. However, in this case, both methods will

require some configuration changes on each host on the network, either updating DNS server

settings or installing a DHCPv6 client. This method will allow smaller prefixes to be used on

subnets, therefore making more efficient use of the address space.

A third method of autoconfiguration that promises to scale the best is a combination of DHCPv6

and stateless autoconfiguration. Most of the hosts on a LAN would use stateless autoconfiguration,

while newer hosts could start migrating to DHCPv6 without needing any changes in network

services.

Even though DHCPv6 software is still young, there are two projects that show some promise.

The “Dibbler” project aims at providing a portable DHCPv6 implementation, currently providing

binaries for Linux 2.4/2.6 and Windows XP. Proposed ports include *BSD and Windows 2000.
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The other project, entitled simply “DHCPv6” is developing a client and server implementation for

Linux, and is hosted at SourceForge. Once this software has matured, vendors will most likely

start integrating DHCPv6 clients and servers into operating systems, paving the way for IPv6-only

networks gaining in popularity.
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